Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(2): 706-15, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25381248

RESUMO

The dominant paradigm for spectrin function is that (αß)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and ß-spectrins in Drosophila. Wild-type α-spectrin binds to both ß- and ßH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to ß-spectrin and reduces binding to ßH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.


Assuntos
Membrana Celular/genética , Drosophila melanogaster/genética , Espectrina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Humanos , Mutação , Multimerização Proteica , Espectrina/química
2.
PLoS One ; 9(4): e93680, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705398

RESUMO

It is increasingly recognized that non-erythroid spectrins have roles remote from the plasma membrane, notably in endomembrane trafficking. The large spectrin isoform, ßH, partners with Annexin B9 to modulate endosomal processing of internalized proteins. This modulation is focused on the early endosome through multivesicular body steps of endocytic processing and loss of either protein appears to cause a traffic jam before removal of ubiquitin at the multivesicular body. We previously reported that ßH/Annexin B9 influenced EGF receptor signaling. While investigating this effect we noticed that mSptiz, the membrane bound precursor of the secreted EGF receptor ligand sSpitz, is located in striking intrusions of the nuclear membrane. Here we characterize these structures and identify them as 'cytoplasmic capes', which were previously identified in old ultrastructural studies and probably coincide with recently recognized sites of non-nuclear-pore RNA export. We show that cytoplasmic capes contain multiple endosomal markers and that their existence is dependent upon ßH and Annexin B9. Diminution of these structures does not lead to a change in mSpitz processing. These results extend the endosomal influence of ßH and its partner Annexin B9 to this unusual compartment at the nuclear envelope.


Assuntos
Anexinas/metabolismo , Estruturas Citoplasmáticas/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Espectrina/metabolismo , Animais , Drosophila , Camundongos , Microscopia Eletrônica de Varredura , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA