Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biometals ; 35(1): 125-145, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34993712

RESUMO

The role of micronutrient deficiency in the pathogenesis of COVID-19 has been reviewed in the literature; however, the data are limited and conflicting. This study investigated the association between the status of essential metals, vitamins, and antioxidant enzyme activities in COVID-19 patients and disease severity. We recruited 155 patients, who were grouped into four classes based on the Adults guideline for the Management of Coronavirus Disease 2019 at King Faisal Specialist & Research Centre (KFSH&RC): asymptomatic (N = 16), mild (N = 49), moderate (N = 68), and severe (N = 22). We measured serum levels of copper (Cu), zinc (Zn), selenium (Se), vitamin D3, vitamin A, vitamin E, total antioxidant capacity, and superoxide dismutase (SOD). Among the patients, 30%, 25%, 37%, and 68% were deficient in Se (< 70.08 µg/L), Zn (< 0.693 µg/mL), vitamin A (< 0.343 µg/mL), and vitamin D3 (< 20.05 µg/L), respectively, and SOD activity was low. Among the patients, 28% had elevated Cu levels (> 1.401 µg/mL, KFSH&RC upper reference limit). Multiple regression analysis revealed an 18% decrease in Se levels in patients with severe symptoms, which increased to 30% after adjusting the model for inflammatory markers. Regardless of inflammation, Se was independently associated with COVID-19 severity. In contrast, a 50% increase in Cu levels was associated with disease severity only after adjusting for C-reactive protein, reflecting its possible inflammatory and pro-oxidant role in COVID-19 pathogenesis. We noted an imbalance in the ratio between Cu and Zn, with ~ 83% of patients having a Cu/Zn ratio > 1, which is an indicator of inflammation. Cu-to-Zn ratio increased to 45% in patients with mild symptoms and 34%-36% in patients with moderate symptoms compared to asymptomatic patients. These relationships were only obtained when one of the laboratory parameters (lymphocyte or monocyte) or inflammatory markers (neutrophil-to-lymphocyte ratio) was included in the regression model. These findings suggest that Cu/Zn might further exacerbate inflammation in COVID-19 patients and might be synergistically associated with disease severity. A 23% decrease in vitamin A was seen in patients with severe symptoms, which disappeared after adjusting for inflammatory markers. This finding may highlight the potential role of inflammation in mediating the relationship between COVID-19 severity and vitamin A levels. Despite our patients' low status of Zn, vitamin D3, and antioxidant enzyme (SOD), there is no evidence of their role in COVID-19 progression. Our findings reinforce that deficiency or excess of certain micronutrients plays a role in the pathogenesis of COVID-19. More studies are required to support our results.


Assuntos
COVID-19/sangue , Cobre/sangue , SARS-CoV-2/patogenicidade , Selênio/sangue , Zinco/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Proteína C-Reativa/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Contagem de Células , Colecalciferol/sangue , Humanos , Linfócitos/imunologia , Linfócitos/virologia , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/virologia , Neutrófilos/imunologia , Neutrófilos/virologia , Análise de Regressão , SARS-CoV-2/crescimento & desenvolvimento , Índice de Gravidade de Doença , Superóxido Dismutase/sangue , Vitamina A/sangue , Vitamina E/sangue
2.
J Biomed Mater Res B Appl Biomater ; 110(3): 691-701, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34619017

RESUMO

The limited availability of human donor organs suitable for transplantation has resulted in ever-increasing patient waiting lists globally. Xenotransplantation is considered a potential option, but is yet to reach clinical practice. Although remarkable progress has been made in overcoming immunological rejection, issues with functionality are still to be resolved. Bioengineering approaches have been used to create cardiac tissues with optimized functions. The use of decellularized xenogeneic cardiac tissues seeded with donor-derived cardiac cells may prove to be a viable strategy as supporting structures of the native tissue such as vasculature can be utilized. Here we used sequential perfusion to decellularize adult rat hearts. The acellular scaffolds were reseeded with human endothelial cells, human fibroblasts, human mesenchymal stem cells, and cardiac cells derived from human-induced pluripotent stem cells. The ability of the resultant recellularized rat scaffolds to activate human naïve neutrophils in vitro was investigated to measure xenogeneic recognition. Our results demonstrate that in contrast to cadaveric xenogeneic hearts, acellular and recellularized xenogeneic scaffolds did not activate human naïve neutrophils and suggest that decellularization removes the xenogeneic antigens that lead to human naïve neutrophil activation thus allowing human cells to populate the now "allogenized" xenogeneic scaffolds.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Células Endoteliais , Matriz Extracelular/química , Xenoenxertos , Humanos , Neutrófilos , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Transplante Heterólogo
3.
Sci Rep ; 11(1): 19888, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615977

RESUMO

To cope with the shortage of filtering facepiece respirators (FFRs) during the coronavirus (COVID-19) pandemic, healthcare institutions were forced to reuse FFRs after applying different decontamination methods including gamma-irradiation (GIR). The aim of this study was to evaluate the effect of GIR on the filtration efficiency (FE) of FFRs and on SARS-CoV-2 detection. The FE of 2 FFRs types (KN95 and N95-3 M masks) was assessed at different particle sizes (0.3-5 µm) following GIR (0-15 kGy) delivered at either typical (1.65 kGy/h) or low (0.5088 kGy/h) dose rates. The detection of two SARS-CoV-2 RNA genes (E and RdRp4) following GIR (0-50 kGy) was carried out using RT-qPCR assay. Both masks showed an overall significant (P < 0.001) reduction in FE with increased GIR doses. No significant differences were observed between GIR dose rates on FE. The GIR exhibited significant increases (P ≤ 0.001) in the cycle threshold values (ΔCt) of both genes, with no detection following high doses. In conclusion, complete degradation of SARS-CoV-2 RNA can be achieved by high GIR (≥ 30 kGy), suggesting its potential use in FFRs decontamination. However, GIR exhibited adverse effects on FE in dose- and particle size-dependent manners, rendering its use to decontaminate FFRs debatable.


Assuntos
COVID-19/virologia , Descontaminação/métodos , Máscaras , SARS-CoV-2/isolamento & purificação , Ventiladores Mecânicos , COVID-19/prevenção & controle , COVID-19/transmissão , Filtração , Raios gama , Humanos , Tamanho da Partícula
4.
Sci Rep ; 11(1): 20984, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697376

RESUMO

SAMHD1, a human host factor found in myeloid cells which restricts HIV-1 replication. It depletes the dNTPs pool for viral cDNA syntheses, thus preventing the viral replication in the cells. The viral accessory protein, Vpx, exists only in SIVmac/HIV-2 particles. Vpx in SIVmac can induce proteosomal degradation of SAMHD1, which then leads to a decrease in the cytoplasmic dNTP pool. The protein-protein interaction between Vpx and SAMHD1 and its consequences are still unclear. Methods: In this study, we cloned, for the first time, Vpx gene from a HIV-2 infected patient and found up to 30% sequence variation compared to known HIV-2 strains. We then analyzed the role of SAMHD1 protein expression in transfected THP-1 and U937 cells by transfecting with the Vpx gene derived from SIVmac, HIV-2 from the NIH sample as well as HIV-2 from a Saudi patient. We found that Vpx gene expression led to reduced levels of intracellular SAMHD1. When the supernatants of the transfected cell lines were examined for secreted cytokines, chemokines and growth factors, Vpx expression seemed to be suppressive of pro-inflammatory response, and skewed the immune response towards an anti-inflammatory response. These results suggest that Vpx can act at two levels: clearance of intracellular restriction factor and suppression of cytokine storm: both aimed at long-term latency and host-pathogen stand-off, suggesting that Vpx is likely to be a potential therapeutic target.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-2/fisiologia , Interações Hospedeiro-Patógeno , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Citocinas/metabolismo , Suscetibilidade a Doenças , Regulação Viral da Expressão Gênica , Humanos , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Ligação Proteica , Análise de Sequência de DNA , Proteínas Virais Reguladoras e Acessórias/genética , Latência Viral
5.
J Inflamm Res ; 14: 4313-4328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511970

RESUMO

PURPOSE: This study aimed to understand the pathophysiology of host responses to infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/(COVID-19) and Middle East respiratory syndrome coronavirus (MERS-CoV) and to identify proteins for patient stratification with different grades of illness severity. PATIENTS AND METHODS: Peripheral blood samples from 43 patients with different grades of COVID-19, 7 MERS-CoV patients admitted to the ICU, and 10 healthy subjects were analyzed using label-free quantitative liquid chromatography-mass spectrometry (LC-MS). RESULTS: We identified 193 and 91 proteins that differed significantly between COVID-19 and MERS-CoV sample groups, respectively, and 49 overlapped between datasets. Only 10 proteins are diagnostic of asymptomatic cases, 12 are prognostic of recovery from severe illness, and 28 are prognostic of a fatal outcome of COVID-19. These proteins are implicated in virus-specific/related signaling networks. Notable among the top canonical pathways are humoral immunity, inflammation, acute-phase response signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, coagulation, and the complement system. Furthermore, we confirmed positive viral shedding in 11.76% of 51 additional peripheral blood samples, indicating that caution should be taken to avoid the possible risk of transfusion of infected blood products. CONCLUSION: We identified COVID-19 and MERS-CoV protein panels that have potential as biomarkers and might assist in the prognosis of SARS-CoV-2 infection. The identified markers further our understanding of COVID-19 disease pathophysiology and may have prognostic or therapeutic potential in predicting or managing host cell responses to human COVID-19 and MERS-CoV infections.

6.
Ann Saudi Med ; 40(5): 373-381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954791

RESUMO

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has prompted a need for mass testing to identify patients with viral infection. The high demand has created a global bottleneck in testing capacity, which prompted us to modify available resources to extract viral RNA and perform reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-COV-2. OBJECTIVES: Report on the use of a DNA extraction kit, after modifications, to extract viral RNA that could then be detected using an FDA-approved SARS-COV-2 RT-qPCR assay. MATERIALS AND METHODS: Initially, automated RNA extraction was performed using a modified DNA kit on samples from control subjects, a bacteriophage, and an RNA virus. We then verified the automated extraction using the modified kit to detect in-lab propagated SARSCOV-2 titrations using an FDA approved commercial kit (S, N, and ORF1b genes) and an in-house primer-probe based assay (E, RdRp2 and RdRp4 genes). RESULTS: Automated RNA extraction on serial dilutions SARS-COV-2 achieved successful one-step RT-qPCR detection down to 60 copies using the commercial kit assay and less than 30 copies using the in-house primer-probe assay. Moreover, RT-qPCR detection was successful after automated RNA extraction using this modified protocol on 12 patient samples of SARS-COV-2 collected by nasopharyngeal swabs and stored in viral transport media. CONCLUSIONS: We demonstrated the capacity of a modified DNA extraction kit for automated viral RNA extraction and detection using a platform that is suitable for mass testing. LIMITATIONS: Small patient sample size. CONFLICT OF INTEREST: None.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nasofaringe/virologia , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Automação , COVID-19 , Teste para COVID-19 , Chlorocebus aethiops , Técnicas de Laboratório Clínico , Proteínas do Envelope de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Vírus da Encefalomiocardite/genética , Humanos , Levivirus/genética , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , RNA Viral/análise , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
7.
J Immunol ; 191(5): 2796-805, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872050

RESUMO

Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Galα1,3Galß1,4GlcNAc-R (Galα1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Galα1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Galα1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Galα1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.


Assuntos
Rejeição de Enxerto/imunologia , Proteína Kangai-1/imunologia , Transplante Heterólogo/imunologia , Animais , Western Blotting , Células Endoteliais/imunologia , Citometria de Fluxo , Imunofluorescência , Humanos , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
8.
J Mol Biol ; 425(15): 2641-55, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23639358

RESUMO

Lipid metabolism is coordinately regulated through signaling networks that integrate biochemical pathways of fat assimilation, mobilization and utilization. Excessive diversion of fat for storage is a key risk factor for many fat-related human diseases. Dietary lipids are absorbed from the intestines and transported to various organs and tissues to provide energy and maintain lipid homeostasis. In humans, disparity between triglycerides (TG) synthesis and removal, via mitochondrial ß-oxidation and VLDL (very low density lipoprotein) secretion, causes excessive TG accumulation in the liver. The mutation in Caenorhabditis elegans KLF-3 leads to high TG accumulation in the worm's intestine. Our previous data suggested that klf-3 regulates lipid metabolism by promoting fatty acid ß-oxidation. Depletion of cholesterol in the diet has no effect on fat deposition in klf-3 (ok1975) mutants. Addition of vitamin D in the diet, however, increases fat levels in klf-3 worms. This suggests that excess vitamin D may be lowering the rate of fatty acid ß-oxidation, with the eventual increase in fat accumulation. We also demonstrate that mutation in klf-3 reduces expression of C. elegans dsc-4 and/or vit genes, the orthologs of mammalian microsomal triglyceride transfer protein and apolipoprotein B, respectively. Both microsomal triglyceride transfer protein and apolipoprotein B are essential for mammalian lipoprotein assembly and transport, and mutation in both dsc-4 (qm182) and vit-5 (ok3239) results in high fat accumulation in worm intestine. Genetic interactions between klf-3 and dsc-4, as well as vit-5 genes, suggest that klf-3 may have an important role in regulating lipid assembly and secretion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Lipoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Fatores de Transcrição/genética
9.
BMC Genomics ; 12: 555, 2011 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22078008

RESUMO

BACKGROUND: A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation. Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of Trans-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG. METHODS: We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice. RESULTS: Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including Gata4, Mef2d and Srebf2. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes. CONCLUSION: Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.


Assuntos
Gorduras na Dieta/efeitos adversos , Coração/fisiopatologia , Nutrigenômica , Caracteres Sexuais , Glutamato de Sódio/efeitos adversos , Ácidos Graxos trans/efeitos adversos , Transcriptoma , Animais , Peso Corporal , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Mol Biol ; 411(3): 537-53, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21704635

RESUMO

Coordinated regulation of fat storage and utilization is essential for energy homeostasis, and its disruption is associated with metabolic syndrome and atherosclerosis in humans. Across species, Krüppel-like transcription factors (KLFs) have been identified as key components of adipogenesis. In humans, KLF14 acts as a master transregulator of adipose gene expression in type 2 diabetes and cis-acting expression quantitative trait locus associated with high-density lipoprotein cholesterol. Herein we report that, in Caenorhabditis elegans, mutants in klf-3 accumulate large fat droplets rich in neutral lipids in the intestine; this lipid accumulation is associated with an increase in triglyceride levels. The klf-3 mutants show normal pharyngeal pumping; however, they are sterile or semisterile. We explored important genetic interactions of klf-3 with the genes encoding enzymes involved in fatty acid (FA) ß-oxidation in mitochondria or peroxisomes and FA synthesis in the cytosol, namely acyl-CoA synthetase (acs-1 and acs-2), acyl-CoA oxidase (F08A8.1 and F08A8.2), and stearoyl-CoA desaturase (fat-7). We show that mutations or RNA interference in these genes increases fat deposits in the intestine of acs-1, acs-2, F08A8.1, and F08A8 animals. We further show that acs-1 and F08A8.1 influence larval development and fertility, respectively. Thus, KLF3 may regulate FA utilization in the intestine and reproductive tissue. We demonstrate that depletion of F08A8.1 activity, but not of acs-1, acs-2, F08A8.2, or fat-7 activity, enhances the fat phenotype of the klf-3 mutant. Taken together, these results suggest that klf-3 regulates lipid metabolism, along with acs-1, acs-2, F08A8.1, and F08A8.2, by promoting FA ß-oxidation and, in parallel, may contribute to normal reproductive behavior and fecundity in C. elegans.


Assuntos
Caenorhabditis elegans/fisiologia , Metabolismo Energético , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos , Acil-CoA Oxidase/metabolismo , Tecido Adiposo/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Coenzima A Ligases/metabolismo , Citosol/metabolismo , Ácidos Graxos/biossíntese , Fertilidade , Mucosa Intestinal/metabolismo , Larva/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mutação , Oxirredução , Peroxissomos/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Reprodução , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/metabolismo
11.
Br J Nutr ; 106(2): 218-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21429276

RESUMO

The incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing, and new experimental models are required to investigate the diverse aspects of these polygenic diseases, which are intimately linked in terms of aetiology. Feline T2DM has been shown to closely resemble human T2DM in terms of its clinical, pathological and physiological features. Our aim was to develop a feline model of diet-induced weight gain, adiposity and metabolic deregulation, and to examine correlates of weight and body fat change, insulin homeostasis, lipid profile, adipokines and clinical chemistry, in order to study associations which may shed light on the mechanism of diet-induced metabolic dysregulation. We used a combination of partially hydrogenated vegetable shortening and high-fructose corn syrup to generate a high-fat-high-fructose diet. The effects of this diet were compared with an isoenergetic standard chow, either in the presence or absence of 1.125 % dietary monosodium glutamate (MSG). Dual-energy X-ray absorptiometry body imaging and a glucose tolerance test were performed. The present results indicate that dietary MSG increased weight gain and adiposity, and reduced insulin sensitivity (P < 0.05), whereas high-fat-high-fructose feeding resulted in elevated cortisol and markers of liver dysfunction (P < 0.01). The combination of all three dietary constituents resulted in lower insulin levels and elevated serum ß-hydroxybutyrate and cortisol (P < 0.05). This combination also resulted in a lower first-phase insulin release during glucose tolerance testing (P < 0.001). In conclusion, markers of insulin deregulation and metabolic dysfunction associated with adiposity and T2DM can be induced by dietary factors in a feline model.


Assuntos
Dieta , Frutose/efeitos adversos , Resistência à Insulina , Obesidade/etiologia , Glutamato de Sódio/efeitos adversos , Ácidos Graxos trans/efeitos adversos , Aumento de Peso/efeitos dos fármacos , Ácido 3-Hidroxibutírico/sangue , Absorciometria de Fóton , Adipocinas/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Gatos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/veterinária , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hidrocortisona/sangue , Insulina/sangue , Lipídeos/sangue , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/veterinária , Óleos de Plantas/efeitos adversos
12.
3 Biotech ; 1(2): 59-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22582147

RESUMO

The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world's population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through ß-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA ß-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism.

13.
Obesity (Silver Spring) ; 18(6): 1122-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20111022

RESUMO

It has previously been shown that patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in both hepatic and adipose tissue metabolism, and the dietary factors that contribute to the pathogenesis of NAFLD are likely to be multifactorial. Using C57BL/6J mice, we examined whether chronic exposure to low-dose dietary monosodium glutamate (MSG), high-fructose corn syrup (HFCS), or a combination of the two, vs. control would affect metabolism and hepatic and visceral fat gene expression in adult male progeny. A maternal diet containing 20% HFCS and/or dietary MSG (97.2 +/- 6.3 mg/kg body weight (bw), provided in the drinking water) was offered ad libitum from 3 weeks before mating, and continued throughout gestation and weaning until the progeny reached 32 weeks of age. Liver and abdominal fat gene expression was compared with control animals fed isocaloric standard chow under identical conditions. HFCS induced hepatic steatosis and increased the expression of genes involved in carbohydrate and lipid metabolism. Conversely, dietary MSG elevated serum free fatty acids (FFAs), triglycerides (TGs), high-density lipoprotein-cholesterol (HDL-C), and insulin, together with the expression of hepatic genes involved in lipid metabolism and bile synthesis. The HFCS+MSG combination elevated hepatic TGs, serum FFAs, and TG levels. In visceral white adipose tissue, both MSG and HFCS diets increased the expression of transcription factor Srebf2 and decreased expression of Ppargc1a, while downregulating the expression of mitochondrial respiratory chain components. MSG increased the expression of several genes implicated in adipocytes differentiation. We hypothesize that HFCS may promote hepatic steatosis, whereas dietary MSG induces dyslipidemia and markers of insulin resistance.


Assuntos
Fígado Gorduroso/induzido quimicamente , Frutose , Expressão Gênica/efeitos dos fármacos , Gordura Intra-Abdominal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Glutamato de Sódio/farmacologia , Animais , Dieta , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Dislipidemias/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Perfilação da Expressão Gênica , Hormônios/sangue , Hormônios/metabolismo , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Glutamato de Sódio/efeitos adversos , Zea mays
14.
Physiol Behav ; 99(3): 334-42, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19945473

RESUMO

AIMS: Recent evidence suggests that intake of excessive dietary fat, particularly saturated fat and trans-hydrogenated oils (trans-fatty acids: TFA) can impair learning and memory. Central obesity, which can be induced by neonatal injections of monosodium Glutamate (MSG), also impairs learning and memory. To further clarify the effects of dietary fat and MSG, we treated C57BL/6J mice with either a TFA-enriched diet, dietary MSG, or a combination of both and examined serum lipid profile and spatial memory compared to mice fed standard chow. Spatial learning was assessed at 6, 16 and 32 weeks of age in a Morris Water Maze (MWM). The subjects were given four days of training to find a hidden platform and a fifth day of reversal learning, in which the platform was moved to a new location. RESULTS: The TFA+MSG combination caused a central adiposity that was accompanied by impairment in locating the hidden platform in the MWM. Females in the TFA+MSG group showed a greater impairment compared to the other diet groups, and also showed elevated levels of fasting serum LDL-C and T-CHOL:HDL-C ratio, together with the lowest levels of HDL-C. Similarly, males in the TFA+MSG diet group were less successful than control mice at locating the hidden platform and had the highest level of abdominal adiposity and elevated levels of fasting serum LDL-C. CONCLUSION: Dietary trans-fat combined with MSG increased central adiposity, promoted dyslipidemia and impaired spatial learning.


Assuntos
Gorduras na Dieta/efeitos adversos , Dislipidemias/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Glutamato de Sódio/efeitos adversos , Ácidos Graxos trans/efeitos adversos , Adiposidade , Animais , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dislipidemias/psicologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Glutamato de Sódio/farmacologia , Ácidos Graxos trans/farmacologia
15.
Obesity (Silver Spring) ; 17(11): 2003-13, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19282820

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup-55 (HFCS-55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS-55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS-55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS-55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS-55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated (ser473)phosphorylation of AKT1. The c-Jun amino-terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS-55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol-binding protein-4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS-55 may contribute to the pathogenesis of NAFLD.


Assuntos
Fígado Gorduroso/etiologia , Frutose/toxicidade , Edulcorantes/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Peso Corporal , Sinalização do Cálcio , Retículo Endoplasmático/patologia , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Feminino , Células Hep G2 , Humanos , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Zea mays
16.
J Lipid Res ; 50(8): 1521-37, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19001666

RESUMO

The effects of dietary monosodium glutamate (MSG) on trans-fatty acid (TFA)-induced nonalcoholic fatty liver disease (NAFLD) are addressed in an animal model. We used Affymetrix microarray analysis to investigate hepatic gene expression and the contribution of visceral white adipose tissue (WAT) to diet-induced NAFLD. Trans-fat feeding increased serum leptin, FFA, HDL-cholesterol (HDL-C), and total cholesterol (T-CHOL) levels, while robustly elevating the expression of genes involved in hepatic lipogenesis, including the transcription factor sterol-regulatory element binding protein 1c. Histological examination revealed hepatic macrosteatosis in TFA-fed animals. Conversely, dietary MSG at doses similar to human average daily intake caused hepatic microsteatosis and the expression of beta-oxidative genes. Serum triglyceride, FFA, and insulin levels were elevated in MSG-treated animals. The abdominal cavities of TFA- or MSG-treated animals had increased WAT deposition compared with controls. Microarray analysis of WAT gene expression revealed increased lipid biosynthetic gene expression, together with a 50% decrease in the key transcription factor Ppargc1a. A combination of TFA+MSG resulted in the highest levels of serum HDL-C, T-CHOL, and leptin. Microarray analysis of TFA+MSG-treated livers showed elevated expression of markers of hepatic inflammation, lipid storage, cell damage, and cell cycle impairment. TFA+MSG mice also had a high degree of WAT deposition and lipogenic gene expression. Levels of Ppargc1a were further reduced to 25% by TFA+MSG treatment. MSG exacerbates TFA-induced NAFLD.


Assuntos
Gorduras na Dieta/administração & dosagem , Fígado Gorduroso/patologia , Gordura Intra-Abdominal/patologia , Fígado/patologia , Glutamato de Sódio/administração & dosagem , Ácidos Graxos trans/administração & dosagem , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Animais , Glicemia/análise , Tamanho Celular/efeitos dos fármacos , Colesterol/sangue , Dieta , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Gordura Intra-Abdominal/efeitos dos fármacos , Leptina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Gravidez , Glutamato de Sódio/toxicidade , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ácidos Graxos trans/toxicidade , Transativadores/genética , Fatores de Transcrição
17.
World J Surg ; 27(10): 1099-104, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12917770

RESUMO

Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer. It can be diagnosed based on a clinical or pathologic basis. We evaluated the usefulness of (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) scans for diagnosing and staging IBC. We retrospectively reviewed the medical records of seven consecutive patients with IBC who underwent FDG-PET scanning for the initial staging. Four patients had follow-up PET scans after chemotherapy. All seven patients presented with diffuse breast enlargement, redness, and peau d'orange for 1 to 5 months' duration. In addition, four patients had a palpable breast mass, and three had axillary lymph node enlargement. Mammography showed diffuse, increased parenchymal density and skin thickening in 85% and parenchymal distortion in 43%. There was no evidence of distant metastasis on computed tomography of the chest or abdomen. Pathologic examination of breast biopsy specimens showed infiltrating ductal carcinoma in six patients, and one had lobular carcinoma. All patients had prechemotherapy whole-body PET scans that showed diffuse FDG uptake in the breast with superimposed intense foci in the primary tumor. Furthermore, there was skin enhancement in 100%, axillary lymph node in 85%, and skeletal metastases in 14% of the patients, confirmed by bone scintigraphy. Postchemotherapy FDG-PET scans performed in four patients showed response in the primary tumor, axillary lymph nodes, and skeletal metastases. The FDG-PET scan is thus useful for displaying the pattern of FDG breast uptake that reflects the extent of the pathologic involvement in IBC (i.e., diffuse breast involvement and dermal lymphatic spread). It can also detect the presence of lymph node and skeletal metastases, demarcating the extent of the disease locally as well as distally.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Mastite/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão , Adulto , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Feminino , Humanos , Metástase Linfática , Mastite/etiologia , Mastite/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA