Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetika ; 51(12): 1433-8, 2015 Dec.
Artigo em Russo | MEDLINE | ID: mdl-27055303

RESUMO

The Northern mole vole E. talpinus, despite its wide distribution, is characterized by a stable karyotype (2n = NF = 54) and slight morphological polymorphism. We made a preliminary analysis of a mitochondrial DNA fragment to clarify the level of genetic variation and differentiation of E. talpinus. the complete cytochrome b gene (cyt b, 1143 bp) and a short part of its flanking gene tRNA-Thr (27 bp) were sequenced. We studied 16 specimens from eight localities, including Crimea, the Volga region, the Trans-Volga region, the Southern Urals, Western Siberia, and Eastern Turkmenistan. Mitotypes of E. talpinus were distributed on a ML dendrogram as four distinct clusters: the first (I) contains specimens from the Crimea, the second (II) combines individuals from the Volgograd region and the left bank of the Don River, the third (III) includes those from the Trans-Volga region, Southern Urals, the left bank of the Irtysh River, and Eastern Turkmenistan; the fourth (IV) are those from the right bank of the Irtysh River. These clusters were relatively distant from each other: the mean genetic distances (D) between them are 0.021-0.051. The Eastern mole vole E. tancrei differed from E. talpinus population groups 1.5-2 times more (D = 0.077-0.084) than the latter did among themselves. Such variations indirectly proved the unity of E. talpinus, despite its high intraspecific differentiation for the studied fragment of mitochondrial DNA. This differentiation apparently occurred because of the long isolation of E. talpinus population groups, which was due to geographic barriers, in particular, the large rivers that completely separate the species range meridionally (the Volga River, the Irtysh River). Sociality and underground lifestyle could accelerate the fixation of mutations in disjunct populations. The composition and distribution of intraspecific groups of E. talpinus, which were identified in analysis of the mitochondrial DNA fragment, do not coincide with the subspecies taxonomy. The subspecies E. t. talpinus is actually a complex taxon, including two or three genetically discrete forms (III, IV, and probably II). Moreover, one of the forms (III) occupies the territory where three subspecies, E. t. talpinus, E. t. rufescens, and E. t. transcaspiae, were described.


Assuntos
Arvicolinae/metabolismo , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , RNA de Transferência de Treonina/genética , Animais , Masculino
2.
Cytogenet Genome Res ; 136(3): 199-207, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22343488

RESUMO

A comparative genomic analysis was carried out in the mole vole sibling species Ellobius tancrei and E. talpinus. Performing fluorescent in situ hybridisation (Zoo-FISH) using chromosome paints from the field vole Microtus agrestis showed no differences in the allocation of syntenic groups in the karyotypes of these sibling species. The only difference between their karyotypes was the position of the centromere in one pair of chromosomes, which is assumed to be the result of an inversion. To verify this hypothesis, we analysed chromosome synapsis in prophase I of meiosis. We utilised a synaptonemal complex (SC) surface-spreading technique to visualise the process of chromosome synapsis in the spermatocytes and oocytes of first-generation hybrids and back-crosses of these sibling species. In prophase I of meiosis, immunocytochemical and electron microscopy analyses revealed that all bivalents had been fully adjusted. Even in the case of a submetacentric-acrocentric bivalent with different centromere locations, synapsis of SC lateral elements was fulfilled along the entire length of the chromosomes and the formation of an inversion loop was not observed. We hypothesise that a possible mechanism leading to the change in centromere position is the repositioning and/or generation of a neocentromere. Despite the great similarity in the karyotypes of these sibling species, they exhibited significant genomic diversification, which manifested as hybrid sterility and parous female death.


Assuntos
Arvicolinae/genética , Hibridização Genômica Comparativa , Hibridização Genética , Hibridização in Situ Fluorescente , Complexo Sinaptonêmico/genética , Animais , Arvicolinae/classificação , Linhagem Celular , Bandeamento Cromossômico , Feminino , Cariotipagem , Masculino , Microscopia de Fluorescência , Complexo Sinaptonêmico/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA