RESUMO
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA não Traduzido , Receptores Notch , Transdução de Sinais , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , RNA não Traduzido/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão GênicaRESUMO
The rewiring of cellular metabolism is a defining characteristic of cancer, as tumor cells adapt to acquire essential nutrients from a nutrient-poor environment to sustain their viability and biomass. While hypoxia has been identified as a major factor depriving cancer cells of nutrients, recent studies have revealed that cancer cells distant from supporting blood vessels also face nutrient limitations. To overcome this challenge, hypoxic cancer cells, which heavily rely on glucose as an energy source, employ alternative pathways such as glycogen metabolism and reductive carboxylation of glutamine to meet their energy requirements for survival. Our preliminary studies, alongside others in the field, have shown that under glucose-deficient conditions, hypoxic cells can utilize mannose and maltose as alternative energy sources. This review aims to comprehensively examine the hypoxic cancer microenvironment, its association with drug resistance, and potential therapeutic strategies for targeting this unique niche. Furthermore, we will critically evaluate the current literature on hypoxic cancer microenvironments and explore state-of-the-art techniques used to analyze alternate carbohydrates, specifically mannose and maltose, in complex biological fluids. We will also propose the most effective analytical methods for quantifying mannose and maltose in such biological samples. By gaining a deeper understanding of the hypoxic cancer cell microenvironment and its role in drug resistance, novel therapeutic approaches can be developed to exploit this knowledge.
Assuntos
Maltose , Neoplasias , Humanos , Hipóxia Celular , Maltose/farmacologia , Maltose/uso terapêutico , Manose/farmacologia , Manose/uso terapêutico , Neoplasias/metabolismo , Hipóxia , Glucose/farmacologia , Microambiente Tumoral , Resistência a MedicamentosRESUMO
Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development.
RESUMO
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Assuntos
Terapia Genética , Transtornos Mentais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/terapiaRESUMO
The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis. Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management. Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors. In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment. However, despite extensive attention regarding potential therapeutic implications of cannabinoids, considerable clinical and preclinical analysis is needed to adequately define the physiological, pharmacological, and medicinal aspects of this range of compounds in various disorders covered in this review. This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment.
Assuntos
Canabinoides , Cannabis , Neoplasias , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Humanos , Neoplasias/tratamento farmacológico , Receptores de Canabinoides , Microambiente TumoralRESUMO
Angiogenesis and metastasis play pivotal roles in the progression of cancer. We recently discovered that crocin, a dietary carotenoid derived from the Himalayan crocus, inhibited the growth of colon cancer cells. However, the exact role of crocin on the angiogenesis and metastasis in colorectal cancer remains unclear. In the present study, we demonstrated that crocin significantly reduces the viability of colon cancer cells (HT-29, Caco-2) and human umbilical vein endothelial cells (HUVEC), but was not toxic to human colon epithelial (HCEC) cells. Furthermore, pre-treatment of human carcinoma cells (HT-29 and Caco-2) with crocin inhibited cell migration, invasion, and angiogenesis in concentration -dependent manner. Further studies demonstrated that crocin inhibited TNF-α, NF-κB and VEGF pathways in colon carcinoma cell angiogenesis and metastasis. Crocin also inhibited cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVEC) in a concentration -dependent manner. We also observed that crocin significantly reduced the secretion of VEGF and TNF-α induced activation of NF-kB by human colon carcinoma cells. In the absence of TNF-α, a concentration-dependent reduction in NF-kB was observed. Many of these observations were confirmed by in vivo angiogenesis models, which showed that crocin significantly reduced the progression of tumour growth. Collectively, these finding suggest that crocin inhibits angiogenesis and colorectal cancer cell metastasis by targeting NF-kB and blocking TNF-α/NF-κB/VEGF pathways.
Assuntos
Carcinoma , Neoplasias do Colo , Células CACO-2 , Carotenoides/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50-60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.
Assuntos
Neoplasias da Mama , Nanopartículas , Óxido de Zinco , Neoplasias da Mama/tratamento farmacológico , Feminino , Química Verde/métodos , Humanos , Nanopartículas/química , Extratos Vegetais/química , Difração de Raios X , Óxido de Zinco/químicaRESUMO
More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger-pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.
RESUMO
AIM: To investigate the potential anti-inflammatory and biochemical effects of Moringa peregrina leaf extracts on testosterone-induced benign prostatic hyperplasia (BPH) in rats. METHODS: Six groups of rats (each group included 5 rats) were included in this study. The groups included: 1) the control group, 2) the testosterone-induced BPH group, 3) with 50 mg/kg bwt (bodyweight) oil-treated BPH, 4) with 100 mg/kg bwt. oil-treated BPH, 5) with 500mg/kg bwt. ethanol treated BPH and 6) with 1,000 mg/kg bwt. aqueous treated BPH group. Biochemical markers were measured to evaluate the effect of M. peregrina leaf extracts. RESULTS: Our results showed a significant improvement in the thickness of epithelial cells of the BPH glandular tissues when treated with different M. peregrina extracts (p < 0.05). In addition, M. peregrina extracts showed anti-inflammatory, anti-proliferative and anti-angiogenesis effects on the BPH tissues by reduction of IL-6, PCNA and VEGF-A, respectively. CONCLUSION: Our preclinical study concluded that M. peregrina leaf extracts showed a significant effect on BPH by reducing inflammation, proliferation, and angiogenic processes with no signs of toxicity.
Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Moringa , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Folhas de Planta , Hiperplasia Prostática/induzido quimicamente , Ratos , TestosteronaRESUMO
Azelaic acid (AzA) is a USFDA bioactive prescribed against acne vulgaris. It possesses delivery challenges like poor aqueous solubility, low skin-penetrability, and dose-dependent side effects, which could be overcome by its synergistic combination with tea tree oil (TTO) as a microemulsion (ME)-based hydrogel composite. AzA-TTO ME was prepared to employ pseudo-ternary phase diagram construction. The best AzA-TTO ME was of uniform size (polydispersity index < 0.7), nano-range (~357.4 ± 2% nm), transmittance (> 90%), and negative zeta potential (-1.42 ± 0.25% mV) values. ME hydrogel composite with optimum rheological and textural attributes showed better permeation, retention, and skin-compliant characteristics, vis-a-vis marketed formulation (Aziderm™) when evaluated in Wistar rat skin. In vitro antibacterial efficacy in bacterial strains, i.e., Staphylococcus aureus, Propionibacterium acne, and Staphylococcus epidermidis, was evaluated employing agar well plate diffusion and broth dilution assay. ME hydrogel has shown an increase in zone of inhibition by two folds and a decrease in minimum inhibitory concentration (MIC) by eightfold against P. acnes vis-a-vis AzA. Finally, ME hydrogel composite exhibited a better reduction in the papule density (93.75 ± 1.64%) in comparison to Aziderm™ 72.69 ± 4.67%) on acne as developed in rats by inducing testosterone. Thus, the developed AzA-TTO ME hydrogel composite promises an efficacious and comparatively safer drug delivery system for the topical therapy of acne vulgaris.
Assuntos
Acne Vulgar , Óleo de Melaleuca , Acne Vulgar/induzido quimicamente , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Animais , Ácidos Dicarboxílicos , Hidrogéis/uso terapêutico , Propionibacterium , Ratos , Ratos Wistar , Chá , Testosterona/uso terapêutico , ÁrvoresRESUMO
Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.
Assuntos
Acne Vulgar , Melaleuca , Óleo de Melaleuca , Acne Vulgar/tratamento farmacológico , Animais , Antibacterianos , Ácidos Dicarboxílicos , Excipientes , Hidrogéis , Ratos , Ratos Wistar , Óleo de Melaleuca/uso terapêuticoRESUMO
The prevalence of colon-associated diseases has increased significantly over the past several decades, as evidenced by accumulated literature on conditions such as Crohn's disease, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Developing therapeutics for these diseases is challenging due to physiological barriers of the colon, systemic side effects, and the intestinal environment. Therefore, in a search for novel methods to overcome some of these problems, researchers discovered that microbial metabolism by gut microbiotia offers a potential method for targeted drug delivery This overview highlights several drug delivery systems used to modulate the microbiota and improve colon-targeted drug delivery. This technology will be important in developing a new generation of therapies which harness the metabolism of the human gut microflora.
RESUMO
The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging.
RESUMO
In this review, we summarised the different methods for copper nanoparticle synthesis, including green methods. We highlighted that the synthesis of the copper nanoparticles from green sources is preferable as they serve as stable and reducing entities. Furthermore, we critically reviewed the effectiveness of copper- based nanoparticles in oncogenic treatments emphasizing breast, lung, colorectal, and skin cancers. Finally, we have summarised the recent progress made in copper-based nanoparticles and their applications to amplify and rectify present cancer treatment options. The synthesis, characterization, stabilization, and functionalization techniques of various copper-based nanoparticles have also been highlighted in each section. In conclusion, the review provides the outlook of copper nanoparticles in cancer diagnostics and therapeutics.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Humanos , Extratos VegetaisRESUMO
With an estimated failure rate of about 90%, immunotherapies that are intended for the treatment of solid tumors have caused an anomalous rise in the mortality rate over the past decades. It is apparent that resistance towards such therapies primarily occurs due to elevated levels of HIF-1 (Hypoxia-induced factor) in tumor cells, which are caused by disrupted microcirculation and diffusion mechanisms. With the advent of nanotechnology, several innovative advances were brought to the fore; and, one such promising direction is the use of perfluorocarbon nanoparticles in the management of solid tumors. Perfluorocarbon nanoparticles enhance the response of hypoxia-based agents (HBAs) within the tumor cells and have been found to augment the entry of HBAs into the tumor micro-environment. The heightened penetration of HBAs causes chronic hypoxia, thus aiding in the process of cell quiescence. In addition, this technology has also been applied in photodynamic therapy, where oxygen self-enriched photosensitizers loaded perfluorocarbon nanoparticles are employed. The resulting processes initiate a cascade, depleting tumour oxygen and turning it into a reactive oxygen species eventually to destroy the tumour cell. This review elaborates on the multiple applications of nanotechnology based perfluorocarbon formulations that are being currently employed in the treatment of tumour hypoxia.
Assuntos
Fluorocarbonos , Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Fluorocarbonos/farmacologia , Fluorocarbonos/uso terapêutico , Humanos , Nanotecnologia , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Microambiente TumoralRESUMO
BACKGROUND: Genetic predisposition to breast cancer (BC) has been extensively explored to achieve an enhanced understanding of the biology of BC. Targeting candidate genes to screen different genetic variants such as RAD51 gene that plays a critical role in DNA repair pathways including the double-strand break repair system is an important task. AIM: To study several single nucleotide polymorphisms (SNPs) within RAD51-UTR gene and to find their relationship with BC risk and prognosis among Jordanian females. MATERIALS AND METHODS: In this case-control study, DNA sequencing technique was used to screen SNPs within the untranslated region (UTR) of RAD51 in 206 cases and 185 controls and the resulting data were statistically analyzed using different types of genetic analyses. Patients' clinical and pathological features were obtained from their medical records to perform genotype-phenotype association analysis. RESULTS: Our findings show a significant association between both SNPs rs528590644, rs1801320 and BC risk (p = 0.016). We estimated the correlation between many of BC prognostic factors and BC risk, and we found an association between rs1801321 and age at first menstruation (p = 0.032) in addition to a strong correlation between age at BC diagnosis and rs1801320 (p = 0.008). CONCLUSION: RAD51-UTR polymorphisms may be involved in BC development and progression.
Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Rad51 Recombinase/genética , Estudos de Casos e Controles , Feminino , Haplótipos , Humanos , Jordânia , Polimorfismo de Nucleotídeo Único , Regiões não Traduzidas/genéticaRESUMO
Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
Assuntos
Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Descoberta de Drogas , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Animais , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêuticoRESUMO
The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines - peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus - are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date.
Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , Humanos , PandemiasRESUMO
Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1ß (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.
Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Hipóxia Celular/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Microambiente TumoralRESUMO
Breast cancer is a heterogeneous disease at morphologic and molecular levels, which is considered the most commonly occurring cancer in women. RAD51, a DNA-repairing protein, involves homologous recombination and has a vital role in genome stability. Polymorphism of the RAD51 gene, and its overexpression, has been proposed to be associated with the development of breast cancer. Overexpression of RAD51 in many types of human cancer including metastatic breast cancer may signify its potential use as a biomarker. Considering the numerous reports on the role of the 5'-UTR-RAD51 polymorphism in breast cancer, this study aimed to investigate the utility of RAD51 gene expression and its variants G135C and G172T as a possible foretelling factor of breast cancer development. DNA sequencing and immunohistochemistry of RAD51 were conducted on 103 samples from patients diagnosed with sporadic breast cancer and 80 samples from a control group. The results demonstrated that the RAD51 variants, G135C and G172T, were significantly presented in the breast cancer tissue compared with the control group. RAD51 expression was mainly shown in the cytoplasm of malignant cells (56% of cases) and significantly correlated with p53 and G135C, C135C variants. Moreover, the occurrence of the G172T variant was significantly associated with the expression of estrogen receptor. Interestingly, 21/26 (81%) of the triple-negative breast cancer showed G135C and C135C genotypes that were significantly associated with the expression of RAD51 (73%). In conclusion, the G135C and C135C variants together with the cytoplasmic expression of RAD51 may have clinical potential as a prognostic predictor for breast cancer development and aggressiveness.