RESUMO
To study the spatial interactions among cancer and non-cancer cells1, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/imunologia , Variações do Número de Cópias de DNA/genética , Aprendizado Profundo , Transcriptoma , Mutação , Macrófagos/metabolismo , Macrófagos/imunologia , Apresentação de Antígeno , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Clonais/metabolismo , Células Clonais/patologiaRESUMO
Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.
RESUMO
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Haplótipos , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Masculino , Análise de Sequência de DNA/métodos , Neoplasias/genética , Frequência do Gene , Análise de Célula ÚnicaRESUMO
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , FemininoRESUMO
Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.
RESUMO
Phylogenetic trees provide a framework for organizing evolutionary histories across the tree of life and aid downstream comparative analyses such as metagenomic identification. Methods that rely on single-marker genes such as 16S rRNA have produced trees of limited accuracy with hundreds of thousands of organisms, whereas methods that use genome-wide data are not scalable to large numbers of genomes. We introduce updating trees using divide-and-conquer (uDance), a method that enables updatable genome-wide inference using a divide-and-conquer strategy that refines different parts of the tree independently and can build off of existing trees, with high accuracy and scalability. With uDance, we infer a species tree of roughly 200,000 genomes using 387 marker genes, totaling 42.5 billion amino acid residues.
RESUMO
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.
Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Eixo Encéfalo-Intestino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Estudos Transversais , Teorema de Bayes , Reprodutibilidade dos Testes , CitocinasRESUMO
Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural networks; phylogenetic placement.].
Assuntos
Aprendizado Profundo , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Algoritmos , Microbiota/genéticaRESUMO
Phylogenetic identification of unknown sequences by placing them on a tree is routinely attempted in modern ecological studies. Such placements are often obtained from incomplete and noisy data, making it essential to augment the results with some notion of uncertainty. While the standard likelihood-based methods designed for placement naturally provide such measures of uncertainty, the newer and more scalable distance-based methods lack this crucial feature. Here, we adopt several parametric and nonparametric sampling methods for measuring the support of phylogenetic placements that have been obtained with the use of distances. Comparing the alternative strategies, we conclude that nonparametric bootstrapping is more accurate than the alternatives. We go on to show how bootstrapping can be performed efficiently using a linear algebraic formulation that makes it up to 30 times faster and implement this optimized version as part of the distance-based placement software APPLES. By examining a wide range of applications, we show that the relative accuracy of maximum likelihood (ML) support values as compared to distance-based methods depends on the application and the dataset. ML is advantageous for fragmentary queries, while distance-based support values are more accurate for full-length and multi-gene datasets. With the quantification of uncertainty, our work fills a crucial gap that prevents the broader adoption of distance-based placement tools.
RESUMO
While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes-Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementation: Our software is available open source at https://github.com/nishatbristy007/NSB. Supplementary information: Supplementary data are available at Bioinformatics Advances online.
RESUMO
Phylogenetic placement of query samples on an existing phylogeny is increasingly used in molecular ecology, including sample identification and microbiome environmental sampling. As the size of available reference trees used in these analyses continues to grow, there is a growing need for methods that place sequences on ultra-large trees with high accuracy. Distance-based placement methods have recently emerged as a path to provide such scalability while allowing flexibility to analyse both assembled and unassembled environmental samples. In this study, we introduce a distance-based phylogenetic placement method, APPLES-2, that is more accurate and scalable than existing distance-based methods and even some of the leading maximum-likelihood methods. This scalability is owed to a divide-and-conquer technique that limits distance calculation and phylogenetic placement to parts of the tree most relevant to each query. The increased scalability and accuracy enables us to study the effectiveness of APPLES-2 for placing microbial genomes on a data set of 10,575 microbial species using subsets of 381 marker genes. APPLES-2 has very high accuracy in this setting, placing 97% of query genomes within three branches of the optimal position in the species tree using 50 marker genes. Our proof-of-concept results show that APPLES-2 can quickly place metagenomic scaffolds on ultra-large backbone trees with high accuracy as long as a scaffold includes tens of marker genes. These results pave the path for a more scalable and widespread use of distance-based placement in various areas of molecular ecology.
Assuntos
Algoritmos , Software , Metagenoma , Metagenômica , FilogeniaRESUMO
The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k-mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had 2.2% error in length estimation compared to 27% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e=.
Assuntos
Algoritmos , Genoma , Genômica/estatística & dados numéricos , Sequências Repetitivas de Ácido Nucleico , Software , Animais , Biologia Computacional , Simulação por Computador , Bases de Dados Genéticas/estatística & dados numéricos , Humanos , Invertebrados/classificação , Invertebrados/genética , Análise dos Mínimos Quadrados , Modelos Lineares , Mamíferos/classificação , Mamíferos/genética , Modelos Genéticos , Filogenia , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genéticaRESUMO
MOTIVATION: Consider a simple computational problem. The inputs are (i) the set of mixed reads generated from a sample that combines two organisms and (ii) separate sets of reads for several reference genomes of known origins. The goal is to find the two organisms that constitute the mixed sample. When constituents are absent from the reference set, we seek to phylogenetically position them with respect to the underlying tree of the reference species. This simple yet fundamental problem (which we call phylogenetic double-placement) has enjoyed surprisingly little attention in the literature. As genome skimming (low-pass sequencing of genomes at low coverage, precluding assembly) becomes more prevalent, this problem finds wide-ranging applications in areas as varied as biodiversity research, food production and provenance, and evolutionary reconstruction. RESULTS: We introduce a model that relates distances between a mixed sample and reference species to the distances between constituents and reference species. Our model is based on Jaccard indices computed between each sample represented as k-mer sets. The model, built on several assumptions and approximations, allows us to formalize the phylogenetic double-placement problem as a non-convex optimization problem that decomposes mixture distances and performs phylogenetic placement simultaneously. Using a variety of techniques, we are able to solve this optimization problem numerically. We test the resulting method, called MIxed Sample Analysis tool (MISA), on a varied set of simulated and biological datasets. Despite all the assumptions used, the method performs remarkably well in practice. AVAILABILITY AND IMPLEMENTATION: The software and data are available at https://github.com/balabanmetin/misa and https://github.com/balabanmetin/misa-data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Software , Evolução Biológica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNARESUMO
The ability to detect the identity of a sample obtained from its environment is a cornerstone of molecular ecological research. Thanks to the falling price of shotgun sequencing, genome skimming, the acquisition of short reads spread across the genome at low coverage, is emerging as an alternative to traditional barcoding. By obtaining far more data across the whole genome, skimming has the promise to increase the precision of sample identification beyond traditional barcoding while keeping the costs manageable. While methods for assembly-free sample identification based on genome skims are now available, little is known about how these methods react to the presence of DNA from organisms other than the target species. In this paper, we show that the accuracy of distances computed between a pair of genome skims based on k-mer similarity can degrade dramatically if the skims include contaminant reads; i.e., any reads originating from other organisms. We establish a theoretical model of the impact of contamination. We then suggest and evaluate a solution to the contamination problem: Query reads in a genome skim against an extensive database of possible contaminants (e.g., all microbial organisms) and filter out any read that matches. We evaluate the effectiveness of this strategy when implemented using Kraken-II, in detailed analyses. Our results show substantial improvements in accuracy as a result of filtering but also point to limitations, including a need for relatively close matches in the contaminant database.
Assuntos
Genoma/genética , DNA/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodosRESUMO
Placing a new species on an existing phylogeny has increasing relevance to several applications. Placement can be used to update phylogenies in a scalable fashion and can help identify unknown query samples using (meta-)barcoding, skimming, or metagenomic data. Maximum likelihood (ML) methods of phylogenetic placement exist, but these methods are not scalable to reference trees with many thousands of leaves, limiting their ability to enjoy benefits of dense taxon sampling in modern reference libraries. They also rely on assembled sequences for the reference set and aligned sequences for the query. Thus, ML methods cannot analyze data sets where the reference consists of unassembled reads, a scenario relevant to emerging applications of genome skimming for sample identification. We introduce APPLES, a distance-based method for phylogenetic placement. Compared to ML, APPLES is an order of magnitude faster and more memory efficient, and unlike ML, it is able to place on large backbone trees (tested for up to 200,000 leaves). We show that using dense references improves accuracy substantially so that APPLES on dense trees is more accurate than ML on sparser trees, where it can run. Finally, APPLES can accurately identify samples without assembled reference or aligned queries using kmer-based distances, a scenario that ML cannot handle. APPLES is available publically at github.com/balabanmetin/apples.
Assuntos
Classificação/métodos , Filogenia , Software , Algoritmos , Sequência de BasesRESUMO
Clustering homologous sequences based on their similarity is a problem that appears in many bioinformatics applications. The fact that sequences cluster is ultimately the result of their phylogenetic relationships. Despite this observation and the natural ways in which a tree can define clusters, most applications of sequence clustering do not use a phylogenetic tree and instead operate on pairwise sequence distances. Due to advances in large-scale phylogenetic inference, we argue that tree-based clustering is under-utilized. We define a family of optimization problems that, given an arbitrary tree, return the minimum number of clusters such that all clusters adhere to constraints on their heterogeneity. We study three specific constraints, limiting (1) the diameter of each cluster, (2) the sum of its branch lengths, or (3) chains of pairwise distances. These three problems can be solved in time that increases linearly with the size of the tree, and for two of the three criteria, the algorithms have been known in the theoretical computer scientist literature. We implement these algorithms in a tool called TreeCluster, which we test on three applications: OTU clustering for microbiome data, HIV transmission clustering, and divide-and-conquer multiple sequence alignment. We show that, by using tree-based distances, TreeCluster generates more internally consistent clusters than alternatives and improves the effectiveness of downstream applications. TreeCluster is available at https://github.com/niemasd/TreeCluster.
Assuntos
Algoritmos , Biologia Computacional/estatística & dados numéricos , HIV/genética , Microbiota/genética , Filogenia , Alinhamento de Sequência/estatística & dados numéricos , Sequência de Bases , Análise por Conglomerados , Biologia Computacional/métodos , HIV/classificação , Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Humanos , SoftwareRESUMO
BACKGROUND: The gene family-free framework for comparative genomics aims at providing methods for gene order analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We study two problems related to the breakpoint median of three genomes, which asks for the construction of a fourth genome that minimizes the sum of breakpoint distances to the input genomes. METHODS: We present a model for constructing a median of three genomes in this family-free setting, based on maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity in the score of a gene adjacency. We study its computational complexity and we describe an integer linear program (ILP) for its exact solution. We further discuss a related problem called family-free adjacencies for k genomes for the special case of [Formula: see text] and present an ILP for its solution. However, for this problem, the computation of exact solutions remains intractable for sufficiently large instances. We then proceed to describe a heuristic method, FFAdj-AM, which performs well in practice. RESULTS: The developed methods compute accurate positional orthologs for genomes comparable in size of bacterial genomes on simulated data and genomic data acquired from the OMA orthology database. In particular, FFAdj-AM performs equally or better when compared to the well-established gene family prediction tool MultiMSOAR. CONCLUSIONS: We study the computational complexity of a new family-free model and present algorithms for its solution. With FFAdj-AM, we propose an appealing alternative to established tools for identifying higher confidence positional orthologs.