Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 122(2): 325-336, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788033

RESUMO

Background and Aims: More intense droughts under climate change threaten species resilience. Hydraulic strategies determine drought survival in woody plants but have been hardly studied in herbaceous species. We explored the intraspecific variability of hydraulic and morphological traits as indicators of dehydration tolerance in a perennial grass, cocksfoot (Dactylis glomerata), which has a large biogeographical distribution in Europe. Methods: Twelve populations of cocksfoot originating from Mediterranean, Temperate and Northern European areas were grown in a controlled environment in pots. Dehydration tolerance, leaf and stem anatomical traits and xylem pressure associated with 88 or 50 % loss of xylem conductance (P88, P50) were measured. Key Results: Across the 12 populations of cocksfoot, P50 ranged from -3.06 to - 6.36 MPa, while P88 ranged from -5.06 to -11.6 MPa. This large intraspecific variability of embolism thresholds corresponded with the biogeographical distribution and some key traits of the populations. In particular, P88 was correlated with dehydration tolerance (r = -0.79). The dehydration-sensitive Temperate populations exhibited the highest P88 (-6.1 MPa). The most dehydration-tolerant Mediterranean populations had the greatest leaf dry matter content and leaf fracture toughness, and the lowest P88 (-10.4 MPa). The Northern populations displayed intermediate trait values, potentially attributable to frost resistance. The thickness of metaxylem vessel walls in stems was highly correlated with P50 (r = -0.92), but no trade-off with stem lignification was observed. The relevance of the linkage between hydraulic and stomatal traits is discussed for drought survival in perennial grasses. Conclusions: Compared with woody species, the large intraspecific variability in dehydration tolerance and embolism resistance within cocksfoot has consequences for its sensitivity to climate change. To better understand adaptive strategies of herbaceous species to increasing drought and frost requires further exploration of the role of hydraulic and mechanical traits using a larger inter- and intraspecific range of species.


Assuntos
Adaptação Fisiológica , Dactylis/fisiologia , Transpiração Vegetal/fisiologia , Mudança Climática , Dactylis/anatomia & histologia , Desidratação , Secas , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Água/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia
2.
Ann Bot ; 118(2): 357-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325898

RESUMO

BACKGROUND AND AIMS: Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. METHODS: Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. KEY RESULTS: Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. CONCLUSIONS: Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future of both natural and restored California grasslands.


Assuntos
Adaptação Fisiológica , Dormência de Plantas/fisiologia , Poaceae/fisiologia , California , Secas , Pradaria , Fenótipo , Raízes de Plantas/fisiologia , Estações do Ano , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA