Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121618, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663208

RESUMO

The potential of nitrate electro-bioremediation has been fully demonstrated at the laboratory scale, although it has not yet been fully implemented due to the challenges associated with scaling-up bioelectrochemical reactors and their on-site operation. This study describes the initial start-up and subsequent stable operation of an electro-bioremediation pilot plant for the treatment of nitrate-contaminated groundwater on-site (Navata site, Spain). The pilot plant was operated under continuous flow mode for 3 months, producing an effluent suitable for drinking water in terms of nitrates and nitrites (<50 mg NO3- L-1; 0 mg NO2- L-1). A maximum nitrate removal rate of 0.9 ± 0.1 kg NO3- m-3 d-1 (efficiency 82 ± 18 %) was achieved at a cathodic hydraulic retention time (HRTcat) of 2.0 h with a competitive energy consumption of 4.3 ± 0.4 kWh kg-1 NO3-. Under these conditions, the techno-economic analysis estimated an operational cost of 0.40 € m-3. Simultaneously, microbiological analyses revealed structural heterogeneity in the reactor, with denitrification functionality concentrated predominantly from the centre to the upper section of the reactor. The most abundant groups were Pseudomonadaceae, Rhizobiaceae, Gallionellaceae, and Xanthomonadaceae. In conclusion, this pilot plant represents a significant advancement in implementing this technology on a larger scale, validating its effectiveness in terms of nitrate removal and cost-effectiveness. Moreover, the results validate the electro-bioremediation in a real environment and encourage further investigation of its potential as a water treatment.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Purificação da Água , Água Subterrânea/química , Nitratos/metabolismo , Projetos Piloto , Purificação da Água/métodos , Desnitrificação , Espanha , Reatores Biológicos
2.
Chemosphere ; 352: 141370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316275

RESUMO

Nitrate-contaminated groundwater is a pressing issue in rural areas, where up to 40 % of the population lacks access to safely managed drinking water services. The high costs and complexity of centralised treatment in these regions exacerbate this problem. To address this challenge, the present study proposes electro-bioremediation as a more accessible decentralised alternative. Specifically, the main focus of this study is developing and evaluating a compact reactor designed to accomplish simultaneous nitrate removal and groundwater disinfection. Significantly, this study has established a new benchmark for nitrate reduction rate within bioelectrochemical reactors, achieving the maximum reported rate of 5.0 ± 0.3 kg NO3- m-3NCC d-1 at an HRTcat of 0.7 h. Furthermore, thein-situ generation of free chlorine was effective for water disinfection, resulting in a residual concentration of up to 4.4 ± 1.1 mg Cl2 L-1 in the effluent at the same HRTcat of 0.7 h. These achievements enabled the treated water to meet the drinking water standards for nitrogen compounds (nitrate, nitrite, and nitrous oxide) as well as pathogens content (T. coliforms, E. coli, and Enterococcus). In conclusion, this study demonstrates the potential of the electro-bioremediation of nitrate-contaminated groundwater as a decentralised water treatment system in rural areas with a competitive operational cost of 1.05 ± 0.16 € m-3.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Nitratos/química , Biodegradação Ambiental , Escherichia coli , Desinfecção , Poluentes Químicos da Água/análise , Água Subterrânea/química
3.
Sci Total Environ ; 845: 157236, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810909

RESUMO

Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Cloro , Desnitrificação , Água Subterrânea/microbiologia , Nitratos/análise , Óxidos de Nitrogênio , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 354: 127181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447329

RESUMO

Anaerobic gas fermentation is a promising approach to transform carbon dioxide (CO2) into chemical building blocks. However, the main operational conditions to enhance the process and its selectivity are still unknown. The main objective of this study was to trigger chain elongation from a joint perspective of thermodynamic and experimental assessment. Thermodynamics revealed that acetic acid formation was the most spontaneous reaction, followed by n-caproic and n-butyric acids, while the doorway for alcohols production was bounded by the selected conditions. Best parameters combinations were applied in three 0.12 L fermenters. Experimentally, n-caproic acid formation was boosted at pH 7, 37 °C, Acetate:Ethanol mass ratio of 1:3 and low H2 partial pressure. Though these conditions did not match with those required to produce their main substrates, the unification of both perspectives yielded the highest n-caproic acid concentration (>11 g L-1) so far from simple substrates, accounting for 77 % of the total products.


Assuntos
Reatores Biológicos , Dióxido de Carbono , Etanol , Fermentação , Termodinâmica
5.
Sci Total Environ ; 806(Pt 1): 150433, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560446

RESUMO

Electro bioremediation is gaining interest as a sustainable treatment for contaminated groundwater. Nevertheless, the investigation is still at the laboratory level, and before their implementation is necessary to overcome important drawbacks. A prevalent issue is the high groundwater hardness that generates scale deposition on electrodes that irreversibly affects the treatment effectiveness and their lifetime. For this reason, the present study evaluated a novel and sustainable approach combining electrochemical water softening as a preliminary step for electro bioremediation of nitrate-contaminated groundwater. Batch mode tests were performed at mL-scale to determine the optimum reactor configuration (single- or two-chambers) and the suitable applied cathode potential for electrochemical softening. A single-chamber reactor working at a cathode potential of -1.2 V vs. Ag/AgCl was chosen. Continuous groundwater softening under this configuration achieved a hardness removal efficiency of 64 ± 4% at a rate of 305 ± 17 mg CaCO3 m-2cathode h-1. The saturation index at the effluent of the main minerals susceptible to precipitate (aragonite, calcite, and brucite) was reduced up to 90%. Softening activity plummeted after 13 days of operation due to precipitate deposition (mostly calcite) on the cathode surface. Polarity reversal periods were considered to detach the precipitated throughout the continuous operation. Their implementation every 3-4 days increased the softening lifetime by 48%, keeping a stable hardness removal efficiency. The nitrate content of softened groundwater was removed in an electro bioremediation system at a rate of 1269 ± 30 g NO3- m-3NCC d-1 (97% nitrate removal efficiency). The energy consumption of the integrated system (1.4 kWh m-3treated) confirmed the competitiveness of the combined treatment and paves the ground for scaling up the process.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Nitratos/análise , Poluentes Químicos da Água/análise , Abrandamento da Água
6.
Water Res ; 206: 117736, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656821

RESUMO

Groundwater pollution and salinization have increased steadily over the years. As the balance between water demand and availability has reached a critical level in many world regions, a sustainable approach for the management (including recovery) of saline water resources has become essential. A 3-compartment cell configuration was tested for a new application based on the simultaneous denitrification and desalination of nitrate-contaminated saline groundwater and the recovery of value-added chemicals. The cells were initially operated in potentiostatic mode to promote autotrophic denitrification at the bio-cathode, and then switched to galvanostatic mode to improve the desalination of groundwater in the central compartment. The average nitrate removal rate achieved was 39±1 mgNO3--N L-1 d-1, and no intermediates (i.e., nitrite and nitrous oxide) were observed in the effluent. Groundwater salinity was considerably reduced (average chloride removal was 63±5%). Within a circular economy approach, part of the removed chloride was recovered in the anodic compartment and converted into chlorine, which reached a concentration of 26.8±3.4 mgCl2 L-1. The accumulated chlorine represents a value-added product, which could also be dosed for disinfection in water treatment plants. With this cell configuration, WHO and European legislation threshold limits for nitrate (11.3 mgNO3--N L-1) and salinity (2.5 mS cm-1) in drinking water were met, with low specific power consumptions (0.13±0.01 kWh g-1NO3--Nremoved). These results are promising and pave the ground for successfully developing a sustainable technology to tackle an urgent environmental issue.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Cloretos , Cloro , Desnitrificação , Nitratos/análise , Poluentes Químicos da Água/análise
7.
Water Res ; 190: 116748, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360100

RESUMO

The coexistence of different pollutants in groundwater is a common threat. Sustainable and resilient technologies are required for their treatment. The present study aims to evaluate microbial electrochemical technologies (METs) for treating groundwater contaminated with nitrate (NO3-) while containing arsenic (in form of arsenite (As(III)) as a co-contaminant. The treatment was based on the combination of nitrate reduction to dinitrogen gas and arsenite oxidation to arsenate (exhibiting less toxicity, solubility, and mobility), which can be removed more easily in further post-treatment. We operated a bioelectrochemical reactor at continuous-flow mode with synthetic contaminated groundwater (33 mg N-NO3- L-1 and 5 mg As(III) L-1) identifying the key operational conditions. Different hydraulic retention times (HRT) were evaluated, reaching a maximum nitrate reduction rate of 519 g N-NO3- m3Net Cathodic Compartment d-1 at HRT of 2.3 h with a cathodic coulombic efficiency of around 100 %. Simultaneously, arsenic oxidation was complete at all HRT tested down to 1.6 h reaching an oxidation rate of up to 90 g As(III) m-3Net Reactor Volume d -1. Electrochemical and microbiological characterization of single granules suggested that arsenite at 5 mg L-1 did not have an inhibitory effect on a denitrifying biocathode mainly represented by Sideroxydans sp. Although the coexistence of abiotic and biotic arsenic oxidation pathways was shown to be likely, microbial arsenite oxidation linked to denitrification by Achromobacter sp. was the most probable pathway. This research paves the ground towards a real application for treating groundwater with widespread pollutants.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Nitratos/análise , Oxirredução , Poluentes Químicos da Água/análise
8.
Bioresour Technol ; 321: 124423, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33260066

RESUMO

Renewable energies will represent an increasing share of the electricity supply, while flue and gasification-derived gases can be a promising CO2 feedstock with a heat load. In this study, microbial electrosynthesis of organic compounds from CO2 at high temperature was proposed as an alternative for valorising energy surplus and decarbonizing the economy. The unremitting fluctuation of renewable energy sources was assessed using two bioreactors at 50 °C, under circumstances of continuous and intermittent power supply (ON-OFF; 8-16 h), simulating an off-grid photovoltaic system. Results highlighted that maximum acetate production rate (43.27 g m-2 d-1) and columbic efficiency (98%) were achieved by working with an intermittent energy supply, while current density was reduced three times. This boosted the production of acetate per unit of electricity provided up to 138 g kWh-1 and reinforced the robustness of the technology by showing resilience to tolerate perturbations and returning to its initial state.


Assuntos
Dióxido de Carbono , Eletricidade , Reatores Biológicos , Eletrodos , Energia Renovável
9.
Sci Total Environ ; 690: 352-360, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299569

RESUMO

Biogas production in wastewater treatment plants (WWTPs) plays a decisive role in the reduction of CO2 emissions and energy needs in the context of the water-energy nexus. The biogas obtained from sewage sludge digestion can be converted into biomethane by the use of biogas upgrading technologies. In this regard, an innovative water scrubbing based technology, known as ABAD Bioenergy® is presented and considered in this work. The effluents resulting from this system consist of biomethane and treated wastewater with a high CO2 concentration. Therefore, the study explores the feasibility of using this CO2-containing effluent in the cathode of a bioelectrochemical system (BES) for the transformation of CO2 into methane. Techno-economic assessment of the process is presented, including the valorisation of anode reactions through the production of chlorine compounds. Finally, the potential impacts of applying this technology in a WWTP operated by FCC Aqualia are (i) increasing biomethane production by 17.4%, (ii) decreasing CO2 content by 42.8% and (iii) producing over 60 ppm of chlorine compounds to disinfect all the treated wastewater of the plant.

11.
Bioresour Technol ; 243: 949-956, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28738550

RESUMO

The feasibility of employing Microbial Electrochemical Technology (MET)-driven electro-Fenton oxidation was evaluated as a post-treatment of an anammox system treating sanitary landfill leachate. Two different MET configuration systems were operated using effluent from partial nitrification-anammox reactor treating mature leachate. In spite of the low organic matter biodegradability of the anammox's effluent (2401±562mgCODL-1; 237±57mgBOD5L-1), the technology was capable to reach COD removal rates of 1077-1244mgL-1d-1 with concomitant renewable electricity production (43.5±2.1Am-3NCC). The operation in continuous mode versus batch mode reinforced the removal capacity of the technology. The recirculation of acidic catholyte into anode chamber hindered the anodic efficiency due to pH stress on anodic electricigens. The obtained results demonstrated that the integrated system is a potentially applicable process to deal with bio-recalcitrant compounds present in mature landfill leachate.


Assuntos
Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eletroquímica , Peróxido de Hidrogênio , Nitrificação , Oxirredução
12.
Bioelectrochemistry ; 117: 57-64, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28633067

RESUMO

To date acetate is the main product of microbial electrosynthesis (MES) from carbon dioxide (CO2). In this work a tubular bioelectrochemical system was used to carry out MES and enhance butyrate production over the other organic products. Batch tests were performed at a fixed cathode potential of -0.8V vs SHE. The reproducibility of the results according to previous experiments was validated in a preliminary test. According to the literature butyrate production could take place by chain elongation reactions at low pH and high hydrogen partial pressure (pH2). During the experiment, CO2 supply was limited to build up pH2 and trigger the production of compounds with a higher degree of reduction. In test 1 butyrate became the predominant end-product, with a concentration of 59.7mMC versus 20.3mMC of acetate, but limitation on CO2 supply resulted in low product titers. CO2 limitation was relaxed in test 2 to increase the bioelectrochemical activity but increase pH2 and promote the production of butyrate, what resulted in the production of 87.5mMC of butyrate and 34.7mMC of acetate. The consumption of ethanol, and the presence of other products in the biocathode (i.e. caproate) suggested that butyrate production took place through chain elongation reactions, likely driven by Megasphaera sueciensis (>39% relative abundance). Extraction and concentration of butyrate was performed by liquid membrane extraction. A concentration phase with 252.4mMC of butyrate was obtained, increasing also butyrate/acetate ratio to 16.4. The results are promising for further research on expanding the product portfolio of MES.


Assuntos
Reatores Biológicos/microbiologia , Ácido Butírico/isolamento & purificação , Ácido Butírico/metabolismo , Dióxido de Carbono/metabolismo , Eletroquímica , Eletrodos , Transporte de Elétrons
13.
Bioresour Technol ; 228: 201-209, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063363

RESUMO

This study reveals that reduction of carbon dioxide (CO2) to commodity chemicals can be functionally compartmentalized in bioelectrochemical systems. In the present example, a syntrophic consortium composed by H2-producers (Rhodobacter sp.) in the biofilm is combined with carboxidotrophic Clostridium species, mainly found in the bulk liquid. The performance of these H2-mediated electricity-driven systems could be tracked by the activity of a biological H2 sensory protein identified at cathode potentials between -0.2V and -0.3V vs SHE. This seems to point out that such signal is not strain specific, but could be detected in any organism containing hydrogenases. Thus, the findings of this work open the door to the development of a biosensor application or soft sensors for monitoring such systems.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Eletricidade , Clostridium/metabolismo , Hidrogenase/metabolismo , Rhodobacter
14.
Biosens Bioelectron ; 75: 352-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26339932

RESUMO

Up to date a few electroactive bacteria embedded in biofilms are described to catalyze both anodic and cathodic reactions in bioelectrochemical systems (i.e. bidirectional electron transfer). How these bacteria transfer electrons to or from the electrode is still uncertain. In this study the extracellular electron transfer mechanism of bacteria within an electroactive biofilm was investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). First, a mature anodic electroactive biofilm was developed from an activated sludge sample (inoculum), acetate as electron donor and a poised electrode (+397mV vs. SHE). Later, this biofilm was "switched" to biocathodic conditions by feeding it with a medium containing nitrates and poising the electrode at -303mV vs. SHE. The electrochemical characterization indicated that both, acetate oxidation and nitrate reduction took place at a similar formal potential of -175±05 and -175±34mV vs. SHE, respectively. The biofilm was predominantly composed by Geobacter sp. at both experimental conditions. Taken together, the results indicated that both processes could be catalyzed by using the same electron conduit, and most likely by the same bacterial consortium. Hence, this study suggests that electroactive bacteria within biofilms could use the same electron transfer conduit for catalyzing anodic and cathodic reactions.


Assuntos
Biofilmes , Técnicas Biossensoriais/métodos , Geobacter/química , Acetatos/química , Respiração Celular , Eletrodos , Elétrons , Nitratos/química , Oxirredução
15.
Chemosphere ; 117: 271-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113993

RESUMO

Anaerobic ammonium oxidation (anammox) is a cost-effective process to treat high-strength nitrogenous wastewater. Even without organic carbon input, the effluent contains bioproducts from autotrophic and heterotrophic bacteria. In this work, excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize the effluent dissolved organic matter (EfOM) from an anammox reactor treating synthetic wastewater. Two dominant EEM components were identified as humic acid-like (component 1) and protein-like (component 2) substances with excitation/emission peaks at <240, 355, 420/464 nm and <240, 280, 330/346 nm, respectively. The presence of both compounds in the effluent was tracked during an activity recovery period (nitrogen load increased from 0.2 to 1.3 kg Nm(-3)d(-1)). The effluent concentration of both components increased during this period, indicating correlation between production and bacterial activity. The dynamics of these bioproducts during both substrate consumption and starvation phases was analyzed in batch experiments. Component 1 was only formed during substrate consumption in a rate proportional to ammonium removal and was considered an up-take associated product characteristic of anammox activity. The results show that the composition of the EfOM was qualitatively and quantitatively influenced by process performance. Monitoring the EfOM could, therefore, offer a useful approach to assess anammox process performance and must be further explored.


Assuntos
Amônia/metabolismo , Substâncias Húmicas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Biomassa , Reatores Biológicos , Análise Fatorial , Nitrogênio/análise , Oxirredução , Espectrometria de Fluorescência , Águas Residuárias/análise , Águas Residuárias/microbiologia
16.
PLoS One ; 8(5): e63460, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717427

RESUMO

The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Desnitrificação , Óxido Nitroso/metabolismo , Proteobactérias/fisiologia , Eletrodos , Dosagem de Genes , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética
17.
Environ Sci Technol ; 46(4): 2309-15, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22257136

RESUMO

The presence of elevated concentrations of nitrates in drinking water has become a serious concern worldwide. The use of autotrophic denitrification in microbial fuel cells (MFCs) for waters with low ionic strengths (i.e., 1000 µS·cm(-1)) has not been considered previously. This study evaluated the feasibility of MFC technology for water denitification and also identified and quantified potential energy losses that result from their usage. The low conductivity (<1600 µS·cm(-1)) of water limited the nitrogen removal efficiency and power production of MFCs and led to the incomplete reduction of nitrate and the nitrous oxide (N(2)O) production (between 4 and 20% of nitrogen removed). Cathodic overpotential was identified as the main energy loss factors (83-90% of total losses). That high overpotential was influenced by denitrification intermediates (NO(2)(-) and N(2)O) and the potential used by microorganisms for growth, activation, and maintenance.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Processos Autotróficos , Desnitrificação , Concentração Osmolar
18.
Bioresour Technol ; 102(6): 4462-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21262566

RESUMO

Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.


Assuntos
Processos Autotróficos , Fontes de Energia Bioelétrica/microbiologia , Nitritos/isolamento & purificação , Biocatálise , Biodegradação Ambiental , Biofilmes , Desnitrificação , Técnicas Eletroquímicas , Eletrodos , Elétrons , Nitratos/análise , Nitrogênio/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos
19.
Bioresour Technol ; 101(24): 9594-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20702091

RESUMO

The aim of this work was to study the effect of pH on electricity production and contaminant dynamics using microbial fuel cells (MFCs). To investigate these effects, an air-cathode MFC was used to treat urban wastewater by adjusting the pH between 6 and 10. The short-term tests showed that the highest power production (0.66 W.m(-3)) was at pH 9.5. The MFC operation in continuous control mode for 30 days and at the optimal pH improved the performance of the cell relative to power generation to 1.8 W.m(-3). Organic matter removal (77% of influent COD) and physical ammonium loss were directly influenced by pH and followed the same behavior as the power generation. At a pH higher than the optimal one, anodic bacteria were affected, and power generation ceased. However, biological nitrogen processes and phosphorus dynamics were independent of the exoelectrogenic bacteria.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Cidades , Conservação de Recursos Energéticos , Eletrodos , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Compostos Orgânicos/isolamento & purificação , Oxigênio/isolamento & purificação , Fosfatos/análise , Fatores de Tempo , Eliminação de Resíduos Líquidos
20.
Bioresour Technol ; 100(23): 5624-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19577465

RESUMO

The goal of this work was to demonstrate the feasibility of treating leachate with high ammonium concentrations using the SBR technology, as a preparative step for the treatment in an anammox reactor. The cycle was based on a step-feed strategy, alternating anoxic and aerobic conditions. Results of the study verified the viability of this process, treating an influent with concentration up to 5000 mg N-NH(4)(+) L(-1). An effluent with about 1500-2000 mg N-NH(4)(+) L(-1) and 2000-3000 mg N-NO(2)(-) L(-1) was achieved, presenting a nitrite to ammonium molar ratio close to the 1.32 required by the anammox. Furthermore, taking advantage of the biodegradable organic matter, the operational strategy allowed denitrifying about 200 mg N-NO(2)(-) L(-1). The extreme operational conditions during the long-term resulted on the selection of a sole AOB phylotype, identified by molecular techniques as Nitrosomonas sp. IWT514.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Compostos de Amônio Quaternário/química , Anaerobiose , Cidades , Concentração de Íons de Hidrogênio , Microbiologia , Modelos Químicos , Nitritos/química , Nitrosomonas/metabolismo , Projetos Piloto , Temperatura , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA