Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954594

RESUMO

Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.

2.
Cell Rep ; 42(12): 113571, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096053

RESUMO

Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.


Assuntos
Riboswitch , Riboswitch/genética , S-Adenosilmetionina/metabolismo , Espermidina , Coenzimas/metabolismo , Oligonucleotídeos , Bactérias/genética , Bactérias/metabolismo , Conformação de Ácido Nucleico
3.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
4.
Nucleic Acids Res ; 51(2): 966-981, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36617976

RESUMO

Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.


Assuntos
Aptâmeros de Nucleotídeos , Engenharia Genética , Riboswitch , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Cafeína , Guanina , Ligantes , Conformação de Ácido Nucleico , Quinina , Riboswitch/genética , Engenharia Genética/métodos
5.
Biochemistry ; 59(49): 4654-4662, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33236895

RESUMO

An intriguing consequence of ongoing riboswitch discovery efforts is the occasional identification of metabolic or toxicity response pathways for unusual ligands. Recently, we reported the experimental validation of three distinct bacterial riboswitch classes that regulate gene expression in response to the selective binding of a guanidinium ion. These riboswitch classes, called guanidine-I, -II, and -III, regulate numerous genes whose protein products include previously misannotated guanidine exporters and enzymes that degrade guanidine via an initial carboxylation reaction. Guanidine is now recognized as the primal substrate of many multidrug efflux pumps that are important for bacterial resistance to certain antibiotics. Guanidine carboxylase enzymes had long been annotated as urea carboxylase enzymes but are now understood to participate in guanidine degradation. Herein, we report the existence of a fourth riboswitch class for this ligand, called guanidine-IV. Members of this class use a novel aptamer to selectively bind guanidine and use an unusual expression platform arrangement that is predicted to activate gene expression when ligand is present. The wide distribution of this abundant riboswitch class, coupled with the striking diversity of other guanidine-sensing RNAs, demonstrates that many bacterial species maintain sophisticated sensory and genetic mechanisms to avoid guanidine toxicity. This finding further highlights the mystery regarding the natural source of this nitrogen-rich chemical moiety.


Assuntos
RNA Bacteriano/química , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanidina/química , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Riboswitch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA