RESUMO
Natural fiber composites attract attention owing to their environmentally friendly attributes. Many techniques, including fiber treatment, coatings, and fiber orientations, are used to improve the strength of natural fiber-reinforced composites. Still, the strength needs to be improved as expected. At present, some automation in manufacturing is also supported. Recently, additive manufacturing (AM) of natural fiber-reinforced composites has attracted many researchers around the globe. In this work, researchers' attention to various natural fibers that are 3D printed is articulated and consolidated, and the future scope of the additive manufacturing of natural fiber-reinforced composite is envisaged using the patent landscape. In addition, some of the advancements in additive manufacturing of natural fiber composites are also discussed with reference to the patents filed lately. This may be helpful for the researchers working on AM of natural fiber composites for taking their research into new orientations.
RESUMO
Waste recycling is one of the key aspects in current day studies to boost the country's circular economy. Recycling wood from construction and demolished structures and combining it with plastics forms wood-polymer composites (WPC) which have a very wide scope of usage. Such recycled composites have very low environmental impact in terms of abiotic potential, global warming potential, and greenhouse potential. Processing of WPCs can be easily done with predetermined strength values that correspond to its end application. Yet, the usage of conventional polymer composite manufacturing techniques such as injection molding and extrusion has very limited scope. Many rheological characterization techniques are being followed to evaluate the influence of formulation and process parameters over the quality of final WPCs. It will be very much interesting to carry out a review on the material formulation of WPCs and additives used. Manufacturing of wood composites can also be made by using bio-based adhesives such as lignin, tannin, and so on. Nuances in complete replacement of synthetic adhesives as bio-based adhesives are also discussed by various researchers which can be done only by complete understanding of formulating factors of bio-based adhesives. Wood composites play a significant role in many non-structural and structural applications such as construction, floorings, windows, and door panels. The current review focuses on the processing of WPCs along with additives such as wood flour and various properties of WPCs such as mechanical, structural, and morphological properties. Applications of wood-based composites in various sectors such as automotive, marine, defense, and structural applications are also highlighted in this review.