Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833294

RESUMO

Carbon-Fibre-Reinforced Polymers (CFRPs) have seen a steady rise in modern industrial applications due to their high strength-to-weight ratio and corrosion resistance. However, their potential is being hindered by delamination which is induced on them during machining operations. This has led to the adoption of new and innovative techniques like cryogenic-assisted machining which could potentially help reduce delamination. This study is aimed at investigating the effect of cryogenic conditions on achieving better hole quality with reduced delamination. In this paper, the numerical analysis of the drilling of CFRP composites is presented. Drilling tests were performed experimentally for validation purposes. The effects of cooling conditions and their subsequent effect on the thrust force and delamination were evaluated using ABAQUS/CAE. The numerical models and experimental results both demonstrated a significant reduction in the delamination factor in CFRP under cryogenic drilling conditions.

2.
Polymers (Basel) ; 13(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34771217

RESUMO

The ever-increasing demand for materials to have superior properties and satisfy functions in the field of soft robotics and beyond has resulted in the advent of the new field of four-dimensional (4D) printing. The ability of these materials to respond to various stimuli inspires novel applications and opens several research possibilities. In this work, we report on the 4D printing of one such Shape Memory Polymer (SMP) tBA-co-DEGDA (tert-Butyl Acrylate with diethylene glycol diacrylate). The novelty lies in establishing the relationship between the various characteristic properties (tensile stress, surface roughness, recovery time, strain fixity, and glass transition temperature) concerning the fact that the print parameters of the laser pulse frequency and print speed are governed in the micro-stereolithography (Micro SLA) method. It is found that the sample printed with a speed of 90 mm/s and 110 pulses/s possessed the best batch of properties, with shape fixity percentages of about 86.3% and recovery times as low as 6.95 s. The samples built using the optimal parameters are further subjected to the addition of graphene nanoparticles, which further enhances all the mechanical and surface properties. It has been observed that the addition of 0.3 wt.% of graphene nanoparticles provides the best results.

3.
Materials (Basel) ; 14(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807985

RESUMO

Additive manufacturing (AM) is replacing conventional manufacturing techniques due to its ability to manufacture complex structures with near-net shape and reduced material wastage. However, the poor surface integrity of the AM parts deteriorates the service life of the components. The AM parts should be subjected to post-processing treatment for improving surface integrity and fatigue life. In this research, maraging steel is printed using direct metal laser sintering (DMLS) process and the influence of grinding on the fatigue life of this additively manufactured material was investigated. For this purpose, the grinding experiments were performed under two different grinding environments such as dry and cryogenic conditions using a cubic boron nitride (CBN) grinding wheel. The results revealed that surface roughness could be reduced by about 87% under cryogenic condition over dry grinding. The fatigue tests carried out on the additive manufactured materials exposed a substantial increase of about 170% in their fatigue life when subjected to cryogenic grinding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA