Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(5): 5084-5099, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343938

RESUMO

The absolute configuration dictates the biological role of chiral molecules in the living world. This is best exemplified by all ribosomally synthesized polypeptides having chiral amino acids only in the l-configuration. However, d-amino acids are also associated with various vital biological processes such as peptidoglycan of the bacterial cell wall, ligands for neurotransmitters, molecules involved in signaling, and precursors of metabolites, to name a few. The occurrence of both l- and d-enantiomers of amino acids in the living systems necessitates the presence of enzymes that exhibit stereoselectivity in recognition of substrates. This mini-review summarizes the overall mechanistic insights into the interconversion of l- and d-amino acids by the amino acid racemases. We discuss the structural, mechanistic, and evolutionary relationship of four crucial enzymes that catalyze the oxidative deamination of l- or d-amino acids and their physiological role in microbes and higher organisms. We highlight the physiological implications of d-amino acid oxidase and d-aspartate oxidase in human health and diseases and their applications as drug targets. Finally, we summarize the potential applications of microbially obtained chiral-selective enzymes as biocatalysts and for various industrial purposes.

2.
Protein Sci ; 32(10): e4779, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695939

RESUMO

Malate (2-hydroxysuccinic acid) and tartrate (2,3-dihydroxysuccinic acid) are chiral substrates; the former existing in two enantiomeric forms (R and S) while the latter exists as three stereoisomers (R,R; S,S; and R,S). Dehydration by stereospecific hydrogen abstraction and antielimination of the hydroxyl group yield the achiral products fumarate and oxaloacetate, respectively. Class-I fumarate hydratase (FH) and L-tartrate dehydratase (L-TTD) are two highly conserved enzymes belonging to the iron-sulfur cluster hydrolyase family of enzymes that catalyze reactions on specific stereoisomers of malate and tartrate. FH from Methanocaldococcus jannaschii accepts only (S)-malate and (S,S)-tartrate as substrates while the structurally similar L-TTD from Escherichia coli accepts only (R)-malate and (R,R)-tartrate as substrates. Phylogenetic analysis reveals a common evolutionary origin of L-TTDs and two-subunit archaeal FHs suggesting a divergence during evolution that may have led to the switch in substrate stereospecificity preference. Due to the high conservation of their sequences, a molecular basis for switch in stereospecificity is not evident from analysis of crystal structures of FH and predicted structure of L-TTD. The switch in enantiomer preference may be rationalized by invoking conformational plasticity of the amino acids interacting with the substrate, together with substrate reorientation and conformer selection about the C2C3 bond of the dicarboxylic acid substrates. Although classical models of enzyme-substrate binding are insufficient to explain such a phenomenon, the enantiomer superposition model suggests that a minor reorientation in the active site residues could lead to the switch in substrate stereospecificity.


Assuntos
Malatos , Tartaratos , Humanos , Tartaratos/metabolismo , Malatos/metabolismo , Filogenia , Desidratação , Hidroliases/genética , Hidroliases/metabolismo , Fumarato Hidratase/química , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Escherichia coli/metabolismo , Domínio Catalítico , Especificidade por Substrato , Cinética
3.
Biomolecules ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759779

RESUMO

Glutamine amidotransferases (GATs) catalyze the hydrolysis of glutamine and transfer the generated ammonia to diverse metabolites. The two catalytic activities, glutaminolysis and the subsequent amination of the acceptor substrate, happen in two distinct catalytic pockets connected by a channel that facilitates the movement of ammonia. The de novo pathway for the synthesis of guanosine monophosphate (GMP) from xanthosine monophosphate (XMP) is enabled by the GAT GMP synthetase (GMPS). In most available crystal structures of GATs, the ammonia channel is evident in their native state or upon ligand binding, providing molecular details of the conduit. In addition, conformational changes that enable the coordination of the two catalytic chemistries are also informed by the available structures. In contrast, despite the first structure of a GMPS being published in 1996, the understanding of catalysis in the acceptor domain and inter-domain crosstalk became possible only after the structure of a glutamine-bound mutant of Plasmodium falciparum GMPS was determined. In this review, we present the current status of our understanding of the molecular basis of catalysis in GMPS, becoming the first comprehensive assessment of the biochemical function of this intriguing enzyme.

4.
Biochemistry ; 62(2): 476-493, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36595439

RESUMO

Fumarate hydratase (FH) is a remarkable catalyst that decreases the free energy of the catalyzed reaction by 30 kcal mol-1, much larger than most exceptional enzymes with extraordinary catalytic rates. Two classes of FH are observed in nature: class-I and class-II, which have different folds, yet catalyze the same reversible hydration/dehydration reaction of the dicarboxylic acids fumarate/malate, with equal efficiencies. Using class-I FH from the hyperthermophilic archaeon Methanocaldococcus jannaschii (Mj) as a model along with comparative analysis with the only other available class-I FH structure from Leishmania major (Lm), we provide insights into the molecular mechanism of catalysis in this class of enzymes. The structure of MjFH apo-protein has been determined, revealing that large intersubunit rearrangements occur across apo- and holo-protein forms, with a largely preorganized active site for substrate binding. Site-directed mutagenesis of active site residues, kinetic analysis, and computational studies, including density functional theory (DFT) and natural population analysis, together show that residues interacting with the carboxylate group of the substrate play a pivotal role in catalysis. Our study establishes that an electrostatic network at the active site of class-I FH polarizes the substrate fumarate through interactions with its carboxylate groups, thereby permitting an easier addition of a water molecule across the olefinic bond. We propose a mechanism of catalysis in FH that occurs through transition-state stabilization involving the distortion of the electronic structure of the substrate olefinic bond mediated by the charge polarization of the bound substrate at the enzyme active site.


Assuntos
Fumarato Hidratase , Fumaratos , Fumarato Hidratase/química , Cinética , Domínio Catalítico , Catálise
5.
Biochemistry ; 61(18): 1988-2006, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040251

RESUMO

Guanosine 5'-monophosphate (GMP) synthetases, enzymes that catalyze the conversion of xanthosine 5'-monophosphate (XMP) to GMP, are composed of two different catalytic units, which are either two domains of a polypeptide chain or two subunits that associate to form a complex. The glutamine amidotransferase (GATase) unit hydrolyzes glutamine generating ammonia, and the ATP pyrophosphatase (ATPPase) unit catalyzes the formation of an AMP-XMP intermediate. The substrate-bound ATPPase allosterically activates GATase, and the ammonia thus generated is tunneled to the ATPPase active site where it reacts with AMP-XMP generating GMP. In ammonia channeling enzymes reported thus far, a tight complex of the two subunits is observed, while the interaction of the two subunits of Methanocaldococcus jannaschii GMP synthetase (MjGMPS) is transient with the underlying mechanism of allostery and substrate channeling largely unclear. Here, we present a mechanistic model encompassing the various steps in the catalytic cycle of MjGMPS based on biochemical experiments, crystal structure, and cross-linking mass spectrometry guided integrative modeling. pH dependence of enzyme kinetics establishes that ammonia is tunneled across the subunits with the lifetime of the complex being ≤0.5 s. The crystal structure of the XMP-bound ATPPase subunit reported herein highlights the role of conformationally dynamic loops in enabling catalysis. The structure of MjGMPS derived using restraints obtained from cross-linking mass spectrometry has enabled the visualization of subunit interactions that enable allostery under catalytic conditions. We integrate the results and propose a functional mechanism for MjGMPS detailing the various steps involved in catalysis.


Assuntos
Guanosina Monofosfato , Ligases , Monofosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Amônia , Carbono-Nitrogênio Ligases , Glutamina/metabolismo , Cinética , Ligases/metabolismo , Pirofosfatases/metabolismo
6.
Biomolecules ; 12(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35883427

RESUMO

Glutamine amidotransferases, enzymes that transfer nitrogen from Gln to various cellular metabolites, are modular, with the amidotransferase (GATase) domain hydrolyzing Gln, generating ammonia and the acceptor domain catalyzing the addition of nitrogen onto its cognate substrate. GMP synthetase (GMPS), an enzyme in the de novo purine nucleotide biosynthetic pathway, is a glutamine amidotransferase that catalyzes the synthesis of GMP from XMP. The reaction involves activation of XMP though adenylation by ATP in the ATP pyrophosphatase (ATPPase) active site, followed by channeling and attack of NH3 generated in the GATase pocket. This complex chemistry entails co-ordination of activity across the active sites, allosteric activation of the GATase domain to modulate Gln hydrolysis and channeling of ammonia from the GATase to the acceptor active site. Functional GMPS dimers associate through the dimerization domain. The crystal structure of the Gln-bound complex of Plasmodium falciparum GMPS (PfGMPS) for the first time revealed large-scale domain rotation to be associated with catalysis and leading to the juxtaposition of two otherwise spatially distal cysteinyl (C113/C337) residues. In this manuscript, we report on an unusual structural variation in the crystal structure of the C89A/C113A PfGMPS double mutant, wherein a larger degree of domain rotation has led to the dissociation of the dimeric structure. Furthermore, we report a hitherto overlooked signature motif tightly related to catalysis.


Assuntos
Amônia , Carbono-Nitrogênio Ligases , Trifosfato de Adenosina/química , Amônia/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Catálise , Glutamina/metabolismo , Cinética , Nitrogênio , Conformação Proteica
7.
Biophys J ; 120(17): 3732-3746, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34302792

RESUMO

Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or ß-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.


Assuntos
Archaea , Succinimidas , Ligação de Hidrogênio , Conformação Proteica , Proteínas , Eletricidade Estática
8.
ACS Omega ; 5(46): 29667-29677, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251402

RESUMO

Protein structure and function can be severely altered by even a single amino acid mutation. Predictions of mutational effects using extensive artificial intelligence (AI)-based models, although accurate, remain as enigmatic as the experimental observations in terms of improving intuitions about the contributions of various factors. Inspired by Lipinski's rules for drug-likeness, we devise simple thresholding criteria on five different descriptors such as conservation, which have so far been limited to qualitative interpretations such as high conservation implies high mutational effect. We analyze systematic deep mutational scanning data of all possible single amino acid substitutions on seven proteins (25153 mutations) to first define these thresholds and then to evaluate the scope and limits of the predictions. At this stage, the approach allows us to comment easily and with a low error rate on the subset of mutations classified as neutral or deleterious by all of the descriptors. We hope that complementary to the accurate AI predictions, these thresholding rules or their subsequent modifications will serve the purpose of codifying the knowledge about the effects of mutations.

9.
Nat Commun ; 11(1): 3228, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591529

RESUMO

Plasmodium falciparum (Pf) relies solely on the salvage pathway for its purine nucleotide requirements, making this pathway indispensable to the parasite. Purine nucleotide levels are regulated by anabolic processes and by nucleotidases that hydrolyse these metabolites into nucleosides. Certain apicomplexan parasites, including Pf, have an IMP-specific-nucleotidase 1 (ISN1). Here we show, by comprehensive substrate screening, that PfISN1 catalyzes the dephosphorylation of inosine monophosphate (IMP) and is allosterically activated by ATP. Crystal structures of tetrameric PfISN1 reveal complex rearrangements of domain organization tightly associated with catalysis. Immunofluorescence microscopy and expression of GFP-fused protein indicate cytosolic localization of PfISN1 and expression in asexual and gametocyte stages of the parasite. With earlier evidence on isn1 upregulation in female gametocytes, the structures reported in this study may contribute to initiate the design for possible transmission-blocking agents.


Assuntos
5'-Nucleotidase/química , 5'-Nucleotidase/metabolismo , Biocatálise , Plasmodium falciparum/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Apoproteínas/metabolismo , Sítios de Ligação , Concentração de Íons de Hidrogênio , Cinética , Magnésio/metabolismo , Camundongos Endogâmicos BALB C , Modelos Moleculares , Proteínas Mutantes/química , Domínios Proteicos , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Especificidade por Substrato
10.
Chembiochem ; 21(19): 2805-2817, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358899

RESUMO

GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.


Assuntos
Trifosfato de Adenosina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Plasmodium falciparum/enzimologia , Pirofosfatases/metabolismo , Trifosfato de Adenosina/química , Biocatálise , Carbono-Nitrogênio Ligases/química , Modelos Moleculares , Pirofosfatases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA