Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 4(6): 916-931, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32490326

RESUMO

RG7834 is a small-molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon-α (wIFN-α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN-α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN-α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off-treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV-specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.

2.
PLoS One ; 12(1): e0169631, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056062

RESUMO

SB 9200, an orally bioavailable dinucleotide, activates the viral sensor proteins, retinoic acid-inducible gene 1 (RIG-I) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) causing the induction of the interferon (IFN) signaling cascade for antiviral defense. The present study evaluated the overall antiviral response in woodchucks upon induction of immune response, first with SB 9200 followed by Entecavir (ETV) versus reduction of viral burden with ETV followed by SB 9200 immunomodulation. Woodchucks chronically infected with woodchuck hepatitis virus (WHV) were treated orally with SB 9200 (30 mg/kg/day) and ETV (0.5 mg/kg/day). Group 1 received ETV for 4 weeks followed by SB 9200 for 12 weeks. Group 2 received SB 9200 for 12 weeks followed by ETV for 4 weeks. At the end of treatment in Group 2, average reductions of 6.4 log10 in serum WHV DNA and 3.3 log10 in WHV surface antigen were observed whereas in Group 1, average reductions of 4.2 log10 and 1.1 log10 in viremia and antigenemia were noted. Both groups demonstrated marked reductions in hepatic WHV nucleic acid levels which were more pronounced in Group 2. Following treatment cessation and the 8-week follow-up, recrudescence of viral replication was observed in Group 1 while viral relapse in Group 2 was significantly delayed. The antiviral effects observed in both groups were associated with temporally different induction of IFN-α, IFN-ß, and IFN-stimulated genes in blood and liver. These results suggest that the induction of host immune responses by pretreatment with SB 9200 followed by ETV resulted in antiviral efficacy that was superior to that obtained using the strategy of viral reduction with ETV followed by immunomodulation.


Assuntos
Antivirais/uso terapêutico , Guanina/análogos & derivados , Vírus da Hepatite B da Marmota/patogenicidade , Marmota/virologia , Animais , Guanina/uso terapêutico , Vírus da Hepatite B da Marmota/efeitos dos fármacos , Vírus da Hepatite B da Marmota/imunologia , Fígado/virologia , Replicação Viral/efeitos dos fármacos
3.
Am J Pathol ; 185(10): 2641-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26435412

RESUMO

Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Fígado/efeitos dos fármacos , Proteína Amiloide A Sérica/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Lesões Encefálicas/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Telmisartan
4.
Brain ; 138(Pt 11): 3299-315, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26115674

RESUMO

See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Lesões Encefálicas/patologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tetrazóis/farmacologia , Animais , Benzamidas/farmacologia , Compostos de Bifenilo , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Gliose/imunologia , Gliose/metabolismo , Gliose/patologia , Inflamação , Camundongos , Camundongos Knockout , PPAR gama/antagonistas & inibidores , Piridinas/farmacologia , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais/efeitos dos fármacos , Telmisartan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA