Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Cell Infect Microbiol ; 11: 660689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898333

RESUMO

Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.


Assuntos
Salmonella typhi , Febre Tifoide , Animais , Macrófagos/metabolismo , Camundongos , RNA Interferente Pequeno , Salmonella typhi/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523895

RESUMO

Macrophages provide a first line of defense against microorganisms, and while some mechanisms to kill pathogens such as the oxidative burst are well described, others are still undefined or unknown. Here, we report that the Rab32 guanosine triphosphatase and its guanine nucleotide exchange factor BLOC-3 (biogenesis of lysosome-related organelles complex-3) are central components of a trafficking pathway that controls both bacterial and fungal intracellular pathogens. This host-defense mechanism is active in both human and murine macrophages and is independent of well-known antimicrobial mechanisms such as the NADPH (reduced form of nicotinamide adenine dinucleotide phosphate)-dependent oxidative burst, production of nitric oxide, and antimicrobial peptides. To survive in human macrophages, Salmonella Typhi actively counteracts the Rab32/BLOC-3 pathway through its Salmonella pathogenicity island-1-encoded type III secretion system. These findings demonstrate that the Rab32/BLOC-3 pathway is a novel and universal host-defense pathway and protects mammalian species from various pathogens.


Assuntos
Salmonella typhi , Proteínas rab de Ligação ao GTP , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Mamíferos/metabolismo , Camundongos , Proteínas rab de Ligação ao GTP/metabolismo
3.
J Clin Med ; 10(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498782

RESUMO

Congenital Generalized Lipodystrophy type 2 (CGL2) is the most severe form of lipodystrophy and is caused by mutations in the BSCL2 gene. Affected patients exhibit a near complete lack of adipose tissue and suffer severe metabolic disease. A recent study identified infection as a major cause of death in CGL2 patients, leading us to examine whether Bscl2 loss could directly affect the innate immune response. We generated a novel mouse model selectively lacking Bscl2 in the myeloid lineage (LysM-B2KO) and also examined the function of bone-marrow-derived macrophages (BMDM) isolated from global Bscl2 knockout (SKO) mice. LysM-B2KO mice failed to develop lipodystrophy and metabolic disease, providing a model to study the direct role of Bscl2 in myeloid lineage cells. Lipopolysaccharide-mediated stimulation of inflammatory cytokines was not impaired in LysM-B2KO mice or in BMDM isolated from either LysM-B2KO or SKO mice. Additionally, intracellular fate and clearance of bacteria in SKO BMDM challenged with Staphylococcus aureus was indistinguishable from that in BMDM isolated from littermate controls. Overall, our findings reveal that selective Bscl2 deficiency in macrophages does not critically impact the innate immune response to infection. Instead, an increased susceptibility to infection in CGL2 patients is likely to result from severe metabolic disease.

4.
Bioconjug Chem ; 31(9): 2201-2210, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786505

RESUMO

The tetrazine/trans-cyclooctene (TCO) inverse electron-demand Diels-Alder (IEDDA) reaction is the fastest bioorthogonal "click" ligation process reported to date. In this context, TCO reagents have found widespread applications; however, their availability and structural diversity is still somewhat limited due to challenges connected with their synthesis and structural modification. To address this issue, we developed a novel strategy for the conjugation of TCO derivatives to a biomolecule, which allows for the creation of greater structural diversity from a single precursor molecule, i.e., trans,trans-1,5-cyclooctadiene [(E,E)-COD] 1, whose preparation requires standard laboratory equipment and readily available reagents. This two-step strategy relies on the use of new bifunctional TCO linkers (5a-11a) for IEDDA reactions, which can be synthesized via 1,3-dipolar cycloaddition of (E,E)-COD 1 with different azido spacers (5-11) carrying an electrophilic function (NHS-ester, N-succinimidyl carbonate, p-nitrophenyl-carbonate, maleimide) in the ω-position. Following bioconjugation of these electrophilic linkers to the nucleophilic residue (cysteine or lysine) of a protein (step 1), the resulting TCO-decorated constructs can be subjected to a IEDDA reaction with tetrazines functionalized with fluorescent or near-infrared (NIR) tags (step 2). We successfully used this strategy to label bovine serum albumin with the TCO linker 8a and subsequently reacted it in a cell lysate with the fluorescein-isothiocyanate (FITC)-derived tetrazine 12. The same strategy was then used to label the bacterial wall of Gram-positive Staphylococcus aureus, showing the potential of these linkers for live-cell imaging. Finally, we determined the impact of structural differences of the linkers upon the stability of the bioorthogonal constructs. The compounds for stability studies were prepared by conjugation of TCO linkers 6a, 8a, and 10a to mAbs, such as Rituximab and Obinutuzumab, and subsequent labeling with a reactive Cy3-functionalized tetrazine.


Assuntos
Alcadienos/química , Corantes Fluorescentes/química , Alcadienos/síntese química , Animais , Bovinos , Química Click , Reação de Cicloadição , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Corantes Fluorescentes/síntese química , Soroalbumina Bovina/química , Staphylococcus aureus/citologia , Staphylococcus aureus/isolamento & purificação
5.
Front Cell Infect Microbiol ; 10: 581024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392103

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever, a disease that kills an estimated 200,000 people annually. Previously, we discovered an antimicrobial pathway dependent on Rab32 and BLOC-3 (BRAM) that is critical to kill S. Typhi in murine macrophages. The BLOC-3 complex is comprised of the two sub-units HPS1 and HPS4 and exhibits guanine-nucleotide exchange factor (GEF) activity to Rab32. In melanocytes, Rab9 has been shown to interact with HPS4 and RUTBC1, a Rab32 GTPase activating (GAP) protein, and regulate the Rab32-mediated melanosome biogenesis. Intriguingly, Rab9-deficient melanocytes exhibit hypopigmentation, a similar phenotype to Rab32 or BLOC-3 deficient melanocytes. Additionally, VPS9-ankyrin-repeat-protein (VARP) has been shown to regulate melanocytic enzyme trafficking into the melanosomes through interaction with Rab32. Although Rab32, Rab9 and VARP are a part of melanogenesis in melanocytes, whether Rab9 and VARP are required for the BRAM mediated killing in macrophages is currently unknown. Here we showed that HPS4 is recruited to the Salmonella-containing vacuoles (SCV) and over-expression of BLOC-3 significantly increased Rab32-positive bacteria vacuoles. We found that SCV acquire Rab9, however over-expressing Rab9 did not change HPS4 localization on bacteria vacuoles. Importantly, we used shRNA to knock-down Rab9 and VARP in macrophages and showed that these proteins are dispensable for Rab32 recruitment to the SCV. Furthermore, we assessed the survival of S. Typhimurium in macrophages deficient for Rab9 or VARP and demonstrated that these proteins are not essential for BRAM pathway-dependent killing.


Assuntos
Melanossomas , Proteínas rab de Ligação ao GTP , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Melanossomas/metabolismo , Camundongos , Salmonella typhi/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
6.
Nat Struct Mol Biol ; 25(10): 918-927, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224736

RESUMO

Actin-cross-linking proteins assemble actin filaments into higher-order structures essential for orchestrating cell shape, adhesion, and motility. Missense mutations in the tandem calponin homology domains of their actin-binding domains (ABDs) underlie numerous genetic diseases, but a molecular understanding of these pathologies is hampered by the lack of high-resolution structures of any actin-cross-linking protein bound to F-actin. Here, taking advantage of a high-affinity, disease-associated mutant of the human filamin A (FLNa) ABD, we combine cryo-electron microscopy and functional studies to reveal at near-atomic resolution how the first calponin homology domain (CH1) and residues immediately N-terminal to it engage actin. We further show that reorientation of CH2 relative to CH1 is required to avoid clashes with actin and to expose F-actin-binding residues on CH1. Our data explain localization of disease-associated loss-of-function mutations to FLNaCH1 and gain-of-function mutations to the regulatory FLNaCH2. Sequence conservation argues that this provides a general model for ABD-F-actin binding.


Assuntos
Actinas/química , Filaminas/química , Actinas/metabolismo , Microscopia Crioeletrônica , Filaminas/metabolismo , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos
7.
Proc Natl Acad Sci U S A ; 113(31): E4558-66, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432991

RESUMO

Bromodomain and extraterminal domain protein inhibitors (BETi) hold great promise as a novel class of cancer therapeutics. Because acquired resistance typically limits durable responses to targeted therapies, it is important to understand mechanisms by which tumor cells adapt to BETi. Here, through pooled shRNA screening of colorectal cancer cells, we identified tripartite motif-containing protein 33 (TRIM33) as a factor promoting sensitivity to BETi. We demonstrate that loss of TRIM33 reprograms cancer cells to a more resistant state through at least two mechanisms. TRIM33 silencing attenuates down-regulation of MYC in response to BETi. Moreover, loss of TRIM33 enhances TGF-ß receptor expression and signaling, and blocking TGF-ß receptor activity potentiates the antiproliferative effect of BETi. These results describe a mechanism for BETi resistance and suggest that combining inhibition of TGF-ß signaling with BET bromodomain inhibition may offer new therapeutic benefits.


Assuntos
Azepinas/farmacologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triazóis/farmacologia , Azepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistência a Medicamentos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Estrutura Molecular , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Triazóis/química
8.
Bioconjug Chem ; 27(5): 1332-40, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27077642

RESUMO

Cyclic CNGRC (cCNGRC) peptides are very important targeting ligands for Aminopeptidase N (APN or CD13), which is overexpressed on the surface of many cancer cells. In this work we have (1) developed an efficient solid-phase synthesis and (2) tested on purified porcine APN and APN-expressing human cells two different classes of cCNGRC peptides: the first carrying a biotin affinity tag or a fluorescent tag attached to the carboxyl Arg-Cys-COOH terminus and the second with the tags attached to the amino H2N-Cys-Asn terminus. Carboxyl-terminus functionalized cCNGRC peptides 3, 6, and 8 showed good affinity for porcine APN and very good capacity to target and be internalized into APN-expressing cells. In contrast, amino-terminus functionalized cCNGRC peptides 4, 5, and 7 displayed significantly decreased affinity and targeting capacity. These results, which are in agreement with the recently reported X-ray structure of a cCNGRC peptide bound to APN showing important stabilizing interactions between the unprotected cCNGRC amino terminus and the APN active site, indicate that the carboxyl and not the amino-terminus of cCNGRC peptides should be used as a "handle" for the attachment of toxic payloads for therapy or isotopically labeled functions for imaging and nuclear medicine.


Assuntos
Antígenos CD13/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Proteica , Suínos
9.
J Biol Chem ; 288(44): 32093-105, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24052262

RESUMO

Filamins are actin-binding and cross-linking proteins that organize the actin cytoskeleton and anchor transmembrane proteins to the cytoskeleton and scaffold signaling pathways. During hematopoietic cell differentiation, transient expression of ASB2α, the specificity subunit of an E3-ubiquitin ligase complex, triggers acute proteasomal degradation of filamins. This led to the proposal that ASB2α regulates hematopoietic cell differentiation by modulating cell adhesion, spreading, and actin remodeling through targeted degradation of filamins. Here, we show that the calponin homology domain 1 (CH1), within the filamin A (FLNa) actin-binding domain, is the minimal fragment sufficient for ASB2α-mediated degradation. Combining an in-depth flow cytometry analysis with mutagenesis of lysine residues within CH1, we find that arginine substitution at each of a cluster of three lysines (Lys-42, Lys-43, and Lys-135) renders FLNa resistant to ASB2α-mediated degradation without altering ASB2α binding. These lysines lie within previously predicted actin-binding sites, and the ASB2α-resistant filamin mutant is defective in targeting to F-actin-rich structures in cells. However, by swapping CH1 with that of α-actinin1, which is resistant to ASB2α-mediated degradation, we generated an ASB2α-resistant chimeric FLNa with normal subcellular localization. Notably, this chimera fully rescues the impaired cell spreading induced by ASB2α expression. Our data therefore reveal ubiquitin acceptor sites in FLNa and establish that ASB2α-mediated effects on cell spreading are due to loss of filamins.


Assuntos
Filaminas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Filaminas/genética , Humanos , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras da Sinalização de Citocina/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
10.
J Cell Sci ; 125(Pt 16): 3858-69, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22595522

RESUMO

Filamins are an important family of actin-binding proteins that, in addition to bundling actin filaments, link cell surface adhesion proteins, signaling receptors and channels to the actin cytoskeleton, and serve as scaffolds for an array of intracellular signaling proteins. Filamins are known to regulate the actin cytoskeleton, act as mechanosensors that modulate tissue responses to matrix density, control cell motility and inhibit activation of integrin adhesion receptors. In this study, we extend the repertoire of filamin activities to include control of extracellular matrix (ECM) degradation. We show that knockdown of filamin increases matrix metalloproteinase (MMP) activity and induces MMP2 activation, enhancing the ability of cells to remodel the ECM and increasing their invasive potential, without significantly altering two-dimensional random cell migration. We further show that within filamin A, the actin-binding domain is necessary, but not sufficient, to suppress the ECM degradation seen in filamin-A-knockdown cells and that dimerization and integrin binding are not required. Filamin mutations are associated with neuronal migration disorders and a range of congenital malformations characterized by skeletal dysplasia and various combinations of cardiac, craniofacial and intestinal anomalies. Furthermore, in breast cancers loss of filamin A has been correlated with increased metastatic potential. Our data suggest that effects on ECM remodeling and cell invasion should be considered when attempting to provide cellular explanations for the physiological and pathological effects of altered filamin expression or filamin mutations.


Assuntos
Proteínas Contráteis/metabolismo , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Metaloproteinase 2 da Matriz/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proteínas Contráteis/deficiência , Proteínas Contráteis/genética , Ativação Enzimática , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrossarcoma/enzimologia , Fibrossarcoma/genética , Filaminas , Técnicas de Silenciamento de Genes , Humanos , Integrinas/metabolismo , Metaloproteinase 14 da Matriz , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica , Fenótipo , Estrutura Terciária de Proteína
11.
Eur J Cell Biol ; 91(11-12): 961-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22564726

RESUMO

Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. A current challenge is to understand how proteolytic activity is so precisely localised at discrete sites of the plasma membrane to produce focalised ECM degradation at invadopodia. Indeed, a number of components including metalloproteases need to be directed to invadopodia to ensure proper segregation of proteolytic activities. We recently found invadopodia to feature the properties of cholesterol-rich membrane domains (a.k.a. lipid drafts) and that ECM degradation depends on the tight control of cholesterol homeostasis. Since apically directed polarised sorting and transport in epithelial cells relies on segregation of proteins into lipid rafts at the Golgi complex, we hypothesised that invadopodia-dependent ECM degradation might also rely on lipid raft-dependent polarised transport routes. To investigate this issue we undertook a three-pronged approach. First, we found that microtubule depolymerisation, which is known to disrupt polarised transport in polarised cells, strongly inhibited invadopodia formation, while not affecting overall protein transport. In the second approach we found that glycosylphosphatidylinositol-anchored green fluorescent protein (an apical model protein), but not vesicular stomatitis virus G-protein or influenza virus hemagglutinin (both model basolateral model cargoes), was transported to sites of ECM degradation. Finally, RNAi-mediated knock-down of proteins known to specifically regulate polarised apical or basolateral transport in epithelial cells, such as caveolin 1 and annexin XIIIB or clathrin, respectively, demonstrated that the selective inhibition of the apical, but not the basolateral, transport route impairs invadopodia formation and ECM degradation. Taken together, our findings suggest that invadopodia are apical-like membrane domains, where signal transduction and local membrane remodelling events might be temporally and spatially confined via selective raft-dependent apical transport routes.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/ultraestrutura , Anexinas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Estruturas da Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microtúbulos/metabolismo , Transporte Proteico , RNA Interferente Pequeno , Transdução de Sinais , Proteínas do Envelope Viral/metabolismo
12.
J Biol Chem ; 286(35): 30571-30581, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21737450

RESUMO

By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2ß) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of ß1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and ß integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Integrinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Adesão Celular , Fibronectinas/metabolismo , Células HeLa , Humanos , Camundongos , Músculos/metabolismo , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
J Cell Sci ; 124(Pt 15): 2631-41, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21750192

RESUMO

Filamins are an important family of actin-binding and crosslinking proteins that mediate remodeling of the actin cytoskeleton and maintain extracellular matrix connections by anchoring transmembrane proteins to actin filaments and linking them to intracellular signaling cascades. We recently found that filamins are targeted for proteasomal degradation by the E3 ubiquitin ligase specificity subunit ASBα and that acute degradation of filamins through this ubiquitin-proteasome pathway correlates with cell differentiation. Specifically, in myeloid leukemia cells retinoic-acid-induced expression of ASB2α triggers filamin degradation and recapitulates early events crucial for cell differentiation. ASB2α is thought to link substrates to the ubiquitin transferase machinery; however, the mechanism by which ASB2α interacts with filamin to induce degradation remained unknown. Here, we use cell-based and biochemical assays to show that the subcellular localization of ASB2α to actin-rich structures is dependent on filamin and that the actin-binding domain (ABD) of filamin mediates the interaction with ASB2α. Furthermore, we show that the ABD is necessary and sufficient for ASB2α-mediated filamin degradation. We propose that ASB2α exerts its effect by binding the ABD and mediating its polyubiquitylation, so targeting filamins for degradation. These studies provide the molecular basis for ASB2α-mediated filamin degradation and unravel an important mechanism by which filamin levels can be acutely regulated.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Contráteis/genética , Cricetinae , Cricetulus , Filaminas , Imunofluorescência , Células HeLa , Humanos , Immunoblotting , Camundongos , Proteínas dos Microfilamentos/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética
14.
PLoS One ; 4(11): e7830, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19915675

RESUMO

Mammalian filamins (FLNs) are a family of three large actin-binding proteins. FLNa, the founding member of the family, was implicated in migration by cell biological analyses and the identification of FLNA mutations in the neuronal migration disorder periventricular heterotopia. However, recent knockout studies have questioned the relevance of FLNa to cell migration. Here we have used shRNA-mediated knockdown of FLNa, FLNb or FLNa and FLNb, or, alternatively, acute proteasomal degradation of all three FLNs, to generate FLN-deficient cells and assess their ability to migrate. We report that loss of FLNa or FLNb has little effect on migration but that knockdown of FLNa and FLNb, or proteolysis of all three FLNs, impairs migration. The observed defect is primarily a deficiency in initiation of motility rather than a problem with maintenance of locomotion speed. FLN-deficient cells are also impaired in spreading. Re-expression of full length FLNa, but not re-expression of a mutated FLNa lacking immunoglobulin domains 19 to 21, reverts both the spreading and the inhibition of initiation of migration.Our results establish a role for FLNs in cell migration and spreading and suggest that compensation by other FLNs may mask phenotypes in single knockout or knockdown cells. We propose that interactions between FLNs and transmembrane or signalling proteins, mediated at least in part by immunoglobulin domains 19 to 21 are important for both cell spreading and initiation of migration.


Assuntos
Proteínas Contráteis/fisiologia , Proteínas dos Microfilamentos/fisiologia , Actinas/química , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas Contráteis/metabolismo , Filaminas , Humanos , Imunoglobulinas/química , Células Jurkat , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo
15.
Mol Biol Cell ; 20(14): 3224-38, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19458194

RESUMO

The physical properties of the extracellular matrix (ECM) regulate the behavior of several cell types; yet, mechanisms by which cells recognize and respond to changes in these properties are not clear. For example, breast epithelial cells undergo ductal morphogenesis only when cultured in a compliant collagen matrix, but not when the tension of the matrix is increased by loading collagen gels or by increasing collagen density. We report that the actin-binding protein filamin A (FLNa) is necessary for cells to contract collagen gels, and pull on collagen fibrils, which leads to collagen remodeling and morphogenesis in compliant, low-density gels. In stiffer, high-density gels, cells are not able to contract and remodel the matrix, and morphogenesis does not occur. However, increased FLNa-beta1 integrin interactions rescue gel contraction and remodeling in high-density gels, resulting in branching morphogenesis. These results suggest morphogenesis can be "tuned" by the balance between cell-generated contractility and opposing matrix stiffness. Our findings support a role for FLNa-beta1 integrin as a mechanosensitive complex that bidirectionally senses the tension of the matrix and, in turn, regulates cellular contractility and response to this matrix tension.


Assuntos
Proteínas Contráteis/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Colágeno/metabolismo , Filaminas , Géis/metabolismo , Humanos , Camundongos , Morfogênese , Cadeias Leves de Miosina/metabolismo , Fosforilação , Ligação Proteica
16.
Blood ; 112(13): 5130-40, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18799729

RESUMO

The ordered series of proliferation and differentiation from hematopoietic progenitor cells is disrupted in leukemia, resulting in arrest of differentiation at immature proliferative stages. Characterizing the molecular basis of hematopoietic differentiation is therefore important for understanding and treating disease. Retinoic acid induces expression of ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) in acute promyelocytic leukemia cells, and ASB2 expression inhibits growth and promotes commitment, recapitulating an early step critical for differentiation. ASB2 is the specificity subunit of an E3 ubiquitin ligase complex and is proposed to exert its effects by regulating the turnover of specific proteins; however, no ASB2 substrates had been identified. Here, we report that ASB2 targets the actin-binding proteins filamin A and B for proteasomal degradation. Knockdown of endogenous ASB2 in leukemia cells delays retinoic acid-induced differentiation and filamin degradation; conversely, ASB2 expression in leukemia cells induces filamin degradation. ASB2 expression inhibits cell spreading, and this effect is recapitulated by knocking down both filamin A and filamin B. Thus, we suggest that ASB2 may regulate hematopoietic cell differentiation by modulating cell spreading and actin remodeling through targeting of filamins for degradation.


Assuntos
Proteínas Contráteis/metabolismo , Leucemia/patologia , Proteínas dos Microfilamentos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Actinas/metabolismo , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Contráteis/genética , Filaminas , Humanos , Leucemia/tratamento farmacológico , Proteínas dos Microfilamentos/genética , RNA Interferente Pequeno/farmacologia , Proteínas Supressoras da Sinalização de Citocina/genética , Tretinoína/farmacologia
17.
J Cell Sci ; 121(Pt 3): 369-78, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18198194

RESUMO

Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. Although many molecular components have been defined, less is known of the formation and regulation of invadopodia. The multidomain protein cortactin, which is involved in the regulation of actin polymerisation, is one such component, but how cortactin is modulated to control the formation of invadopodia has not been elucidated. Here, a new invadopodia synchronization protocol is used to show that the cortactin N-terminal acidic and SH3 domains, involved in Arp2/3 complex and N-WASP binding and activation, respectively, are both required for invadopodia biogenesis. In addition, through a combination of RNA interference and a wide array of cortactin phosphorylation mutants, we were able to show that three convergent regulatory inputs based on the regulation of cortactin phosphorylation by Src-family kinases, Erk1/Erk2 and PAK are necessary for invadopodia formation and extracellular matrix degradation. These findings suggest that cortactin is a scaffold protein bringing together the different components necessary for the formation of the invadopodia, and that a fine balance between different phosphorylation events induces subtle changes in structure to calibrate cortactin function.


Assuntos
Extensões da Superfície Celular/fisiologia , Cortactina/fisiologia , Matriz Extracelular/fisiologia , Invasividade Neoplásica/fisiopatologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Extensões da Superfície Celular/patologia , Cortactina/antagonistas & inibidores , Cortactina/química , Cortactina/genética , Primers do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melanoma/patologia , Melanoma/fisiopatologia , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinases Ativadas por p21/metabolismo , Domínios de Homologia de src , Quinases da Família src/metabolismo
18.
Eur J Cell Biol ; 85(12): 1217-31, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17010475

RESUMO

The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/fisiologia , Matriz Extracelular/metabolismo , Actinas/ultraestrutura , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Estruturas da Membrana Celular/fisiologia , Estruturas da Membrana Celular/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/ultraestrutura , Humanos , Melanoma/fisiopatologia , Invasividade Neoplásica/fisiopatologia , Neoplasias Cutâneas/fisiopatologia
19.
Eur J Cell Biol ; 85(3-4): 159-64, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16546558

RESUMO

The controlled degradation of extracellular matrix is crucial in physiological and pathological cell invasion alike. In cultured cells, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years towards understanding the basic molecular components and the ultrastructural features of invadopodia. This current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology. Considering the substantial interest and momentum in the field, the need for an operational framework to correctly define and identify invadopodia will also be discussed.


Assuntos
Extensões da Superfície Celular/fisiologia , Animais , Extensões da Superfície Celular/ultraestrutura , Matriz Extracelular/fisiologia , Humanos , Microscopia Confocal , Modelos Biológicos , Células Tumorais Cultivadas
20.
Mol Cell ; 21(3): 337-47, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16455489

RESUMO

The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.


Assuntos
Proteínas Contráteis/química , Proteínas Contráteis/metabolismo , Cadeias beta de Integrinas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Talina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calpaína/metabolismo , Proteínas Contráteis/genética , Cristalografia por Raios X , Filaminas , Cadeias beta de Integrinas/química , Camundongos , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA