Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Adv ; 9(17): eade4973, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115919

RESUMO

Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/genética , Evolução Biológica , Filogenia , Evolução Molecular
2.
Syst Biol ; 72(1): 1-16, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412616

RESUMO

Phylogenetic reconstruction using concatenated loci ("phylogenomics" or "supermatrix phylogeny") is a powerful tool for solving evolutionary splits that are poorly resolved in single gene/protein trees. However, recent phylogenomic attempts to resolve the eukaryote root have yielded conflicting results, along with claims of various artifacts hidden in the data. We have investigated these conflicts using two new methods for assessing phylogenetic conflict. ConJak uses whole marker (gene or protein) jackknifing to assess deviation from a central mean for each individual sequence, whereas ConWin uses a sliding window to screen for incongruent protein fragments (mosaics). Both methods allow selective masking of individual sequences or sequence fragments in order to minimize missing data, an important consideration for resolving deep splits with limited data. Analyses focused on a set of 76 eukaryotic proteins of bacterial ancestry previously used in various combinations to assess the branching order among the three major divisions of eukaryotes: Amorphea (mainly animals, fungi, and Amoebozoa), Diaphoretickes (most other well-known eukaryotes and nearly all algae) and Excavata, represented here by Discoba (Jakobida, Heterolobosea, and Euglenozoa). ConJak analyses found strong outliers to be concentrated in undersampled lineages, whereas ConWin analyses of Discoba, the most undersampled of the major lineages, detected potentially incongruent fragments scattered throughout. Phylogenetic analyses of the full data using an LG-gamma model support a Discoba sister scenario (neozoan-excavate root), which rises to 99-100% bootstrap support with data masked according to either protocol. However, analyses with two site-specific (CAT) mixture models yielded widely inconsistent results and a striking sensitivity to missing data. The neozoan-excavate root places Amorphea and Diaphoretickes as more closely related to each other than either is to Discoba, a fundamental relationship that should remain unaffected by additional taxa. [CAT-GTR; Discoba; eukaryote tree of life; HGT; jackknife; mixture models; mosaic genes; phylogenomics; sliding window; supermatrix.].


Assuntos
Evolução Biológica , Eucariotos , Animais , Eucariotos/genética , Filogenia
3.
Vet Parasitol Reg Stud Reports ; 24: 100575, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34024391

RESUMO

Ixodes ricinus (L.) (Acari: Ixodidae) is a major vector for the transmission of several important human pathogens. The aim of the present study was to evaluate the in vitro efficacy of different concentrations of essential oils (Eos) on I. ricinus tick nymphs. Oils were obtained from the leaves of three plants native to Libya: white wormwood (Artemisia herba alba Asso), marjoram (Origanum majorana L.) and Arâr (Juniperus phoenicea L., English common name Phoenician juniper). Assays were done using the "open filter paper method". Two concentrations from each oil, 0.5 and 1 µl/cm, were tested. The acaricidal effect was measured in terms of the lethal concentrations (LC50, LC95) and lethal time (LT50, LT95). Mortality rates were obtained by counting the surviving nymphs every 30 min for the first five hours and then at 24, 48 and 72 h. A mortality of 100% was recorded at the higher concentration of oils (1 µl/cm2) from A. herba alba and J. phoenicea at the first 2 h of exposure. Exposure to O. majorana led to 100% mortality on the third day (72 h), and this effect decreased noticeably with 0.5 µl/cm2 oil at the same exposure time. However, 50% of ticks showed a paralysis effect and less movement after 2 h. The LC50 of mortality was reached within the first 24 h of exposure time at 0.5 µl/cm2 of O. majorana, which produced 60% tick's mortality. Chemical composition of the essential oils was elucidated by gas chromatography-mass spectrometry analyses. These results suggest that essential oils deserve further investigation as components of alternative approaches for I. ricinus tick control.


Assuntos
Acaricidas , Artemisia , Ixodes , Juniperus , Óleos Voláteis , Origanum , Animais , Artemisia/química , Juniperus/química , Óleos Voláteis/farmacologia
4.
Exp Appl Acarol ; 77(4): 585-599, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31089978

RESUMO

Essential oils extracted from the leaves of Libyan Rosemary (Rosmarinus officinalis L.), and Miswak (Salvadora persica L.) were evaluated for their acaricidal and repellent effects on Ixodes ricinus L. nymphs (Acari: Ixodidae) using a bioassay based on an 'open filter paper method'. Rosmarinus officinalis leaf essential oil diluted to 0.5 and 1 µl/cm2 in acetone exhibited, respectively, 20 and 100% tick mortality after about 5 h of exposure. A total of 50 and 95% of I. ricinus nymphs were killed by direct contact with the oil when exposed to lethal concentrations (LC) of 0.7 µl/cm2 (LC50) and 0.95 µl/cm2 (LC95), respectively. The LC50 (0.5 µl/cm2) was reached before the end of the first 24 h of exposure time (ET), as tick mortality at 24 h was 60%. Salvadora persica leaf essential oil at 1 µl/cm2 showed a significant repellency effect against I. ricinus nymphs at 1.5 h ET. A 95% repellency was observed at a repellent concentration (RC95) of 1 µl/cm2 of S. persica, but no significant mortality was recorded at this dose of S. persica oil. Gas chromatography-mass spectrometry analyses showed that the main monoterpenes in both oils were 1,8-cineol, α-pinene, and ß-pinene, although in markedly different proportions. These results suggest that essential oils have substantial potential as alternative approaches for I. ricinus tick control.


Assuntos
Acaricidas , Ixodes , Óleos Voláteis , Rosmarinus/química , Salvadoraceae/química , Animais , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Eucaliptol/análise , Líbia , Monoterpenos/análise , Ninfa/crescimento & desenvolvimento , Óleos Voláteis/análise
5.
Protist ; 169(1): 64-78, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29427837

RESUMO

Dictyostelia is a monophyletic group of transiently multicellular (sorocarpic) amoebae, whose study is currently limited to laboratory culture. This tends to favour faster growing species with robust sorocarps, while species with smaller more delicate sorocarps constitute most of the group's taxonomic breadth. The number of known species is also small (∼150) given Dictyostelia's molecular depth and apparent antiquity (>600 myr). Nonetheless, dictyostelid sequences are rarely recovered in culture independent sampling (ciPCR) surveys. We developed ciPCR primers to specifically target dictyostelid small subunit (SSU or 18S) rDNA and tested them on total DNAs extracted from a wide range of soils from five continents. The resulting clone libraries show mostly dictyostelid sequences (∼90%), and phylogenetic analyses of these sequences indicate novel lineages in all four dictyostelid families and most genera. This is especially true for the species-rich Heterostelium and Dictyosteliaceae but also the less species-rich Raperosteliaceae. However, the most novel deep branches are found in two very species-poor taxa, including the deepest branch yet seen in the highly divergent Cavenderiaceae. These results confirm a deep hidden diversity of Dictyostelia, potentially including novel morphologies and developmental schemes. The primers and protocols presented here should also enable more comprehensive studies of dictyostelid ecology.


Assuntos
Biodiversidade , Dictyostelium/genética , Primers do DNA/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Dictyostelium/classificação , Dictyostelium/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase
6.
Protist ; 169(1): 1-28, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367151

RESUMO

Traditional morphology-based taxonomy of dictyostelids is rejected by molecular phylogeny. A new classification is presented based on monophyletic entities with consistent and strong molecular phylogenetic support and that are, as far as possible, morphologically recognizable. All newly named clades are diagnosed with small subunit ribosomal RNA (18S rRNA) sequence signatures plus morphological synapomorphies where possible. The two major molecular clades are given the rank of order, as Acytosteliales ord. nov. and Dictyosteliales. The two major clades within each of these orders are recognized and given the rank of family as, respectively, Acytosteliaceae and Cavenderiaceae fam. nov. in Acytosteliales, and Dictyosteliaceae and Raperosteliaceae fam. nov. in Dictyosteliales. Twelve genera are recognized: Cavenderia gen. nov. in Cavenderiaceae, Acytostelium, Rostrostelium gen. nov. and Heterostelium gen. nov. in Acytosteliaceae, Tieghemostelium gen. nov., Hagiwaraea gen. nov., Raperostelium gen. nov. and Speleostelium gen. nov. in Raperosteliaceae, and Dictyostelium and Polysphondylium in Dictyosteliaceae. The "polycephalum" complex is treated as Coremiostelium gen. nov. (not assigned to family) and the "polycarpum" complex as Synstelium gen. nov. (not assigned to order and family). Coenonia, which may not be a dictyostelid, is treated as a genus incertae sedis. Eighty-eight new combinations are made at species and variety level, and Dictyostelium ammophilum is validated.


Assuntos
Dictyosteliida/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Dictyosteliida/genética , Dictyosteliida/crescimento & desenvolvimento , Dictyosteliida/isolamento & purificação , Filogenia , RNA Ribossômico 18S/genética
7.
Mol Phylogenet Evol ; 101: 1-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27132173

RESUMO

Rhizaria is a major eukaryotic group of tremendous diversity, including amoebae with spectacular skeletons or tests (Radiolaria and Foraminifera), plasmodial parasites (Plasmodiophorida) and secondary endosymbionts (Chlorarachniophyta). Current phylogeny places Rhizaria in an unresolved trichotomy with Stramenopila and Alveolata (supergroup "SAR"). We assembled a 147-protein data set with extensive rhizarian coverage (M147), including the first transcriptomic data for a euglyphid amoeba. Phylogenetic pre-screening of individual proteins indicated potential problems with radically misplaced sequences due either to contamination of rhizarian sequences amplified from wild collected material and/or extremely long branches (xLBs). Therefore, two data subsets were extracted containing either all proteins consistently recovering rhizarian monophyly (M34) or excluding all proteins with ⩾3 xLBs (defined as ⩾2× the average terminal branch length for the tree). Phylogenetic analyses of M147 give conflicting results depending on the outgroup and method of analysis but strongly support an exclusive Rhizaria+Alveolata (R+A) clade with both data subsets (M34 and M37) regardless of phylogenetic method used. Support for an R+A clade is most consistent when a close outgroup is used and decreases with more distant outgroups, suggesting that support for alternative SAR topologies may reflect a long-branch attraction artifact. A survey of xLB distribution among taxa and protein functional category indicates that small "informational" proteins in particular have highly variable evolutionary rates with no consistent pattern among taxa.


Assuntos
Alveolados/classificação , Alveolados/metabolismo , Bases de Dados de Proteínas , Filogenia , Rhizaria/classificação , Rhizaria/metabolismo , Alveolados/genética , Genômica , Rhizaria/genética , Seleção Genética
8.
Mol Biol Evol ; 33(1): 122-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26412445

RESUMO

The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis.


Assuntos
Alphaproteobacteria/genética , DNA Mitocondrial/genética , Transferência Genética Horizontal/genética , Simbiose/genética , Sequência de Aminoácidos , Eucariotos/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
9.
Mol Phylogenet Evol ; 92: 53-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26048704

RESUMO

Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruiting bodies, a characteristic that has also led to their long history of study and widespread use as model systems. Ribosomal RNA phylogeny of Dictyostelia identified four major divisions (Groups 1-4), none of which correspond to traditional genera. Group 1 was also tentatively identified as sister lineage to the other three Groups, although not consistently or with strong support. We tested the dictyostelid root using universal protein-coding genes identified by exhaustive comparison of six completely sequenced dictyostelid genomes, which include representatives of all four major molecular Groups. A set of 213 genes are low-copy number in all genomes, present in at least one amoebozoan outgroup taxon (Acanthamoeba castellanii or Physarum polycephalum), and phylogenetically congruent. Phylogenetic analysis of a concatenation of the deduced protein sequences produces a single topology dividing Dictyostelia into two major divisions: Groups 1+2 and Groups 3+4. All clades in the tree are fully supported by maximum likelihood and Bayesian inference, and all alternative roots are unambiguously rejected by the approximately unbiased (AU) test. The 1+2, 3+4 root is also fully supported even after deleting clusters with strong individual support for this root, or concatenating all clusters with low support for alternative roots. The 213 putatively ancestral amoebozoan proteins encode a wide variety of functions including 21 KOG categories out of a total of 25. These comprehensive analyses and consistent results indicate that it is time for full taxonomic revision of Dictyostelia, which will also enable more effective exploitation of its unique potential as an evolutionary model system.


Assuntos
Dictyostelium/classificação , Dictyostelium/metabolismo , Filogenia , Proteínas/análise , Sequência de Aminoácidos , Amoeba/química , Amoeba/metabolismo , Teorema de Bayes , Dictyostelium/genética , Genoma/genética , Proteínas/química , RNA Ribossômico/genética
10.
Genome Biol Evol ; 6(9): 2240-57, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25146648

RESUMO

Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida.


Assuntos
DNA Mitocondrial/genética , Eucariotos/genética , Genoma Mitocondrial , Edição de RNA , Sequência de Bases , Códon , Eucariotos/classificação , Transferência Genética Horizontal , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia
11.
Curr Biol ; 24(4): 465-70, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24508168

RESUMO

The root of the eukaryote tree of life defines some of the most fundamental relationships among species. It is also critical for defining the last eukaryote common ancestor (LECA), the shared heritage of all extant species. The unikont-bikont root has been the reigning paradigm for eukaryotes for more than 10 years but is becoming increasingly controversial. We developed a carefully vetted data set, consisting of 37 nuclear-encoded proteins of close bacterial ancestry (euBacs) and their closest bacterial relatives, augmented by deep sequencing of the Acrasis kona (Heterolobosea, Discoba) transcriptome. Phylogenetic analysis of these data produces a highly robust, fully resolved global phylogeny of eukaryotes. The tree sorts all examined eukaryotes into three megagroups and identifies the Discoba, and potentially its parent taxon Excavata, as the sister group to the bulk of known eukaryote diversity, the proposed Neozoa (Amorphea + Stramenopila+Alveolata+Rhizaria+Plantae [SARP]). All major alternative hypotheses are rejected with as little as ∼50% of the data, and this resolution is unaffected by the presence of fast-evolving alignment positions or distant outgroup sequences. This "neozoan-excavate" root revises hypotheses of early eukaryote evolution and highlights the importance of the poorly studied Discoba for understanding the evolution of eukaryotic diversity and basic cellular processes.


Assuntos
Eucariotos/genética , Filogenia , Dados de Sequência Molecular
12.
BMC Evol Biol ; 13: 140, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23826714

RESUMO

BACKGROUND: Insertions/deletions (indels) in protein sequences are useful as drug targets, protein structure predictors, species diagnostics and evolutionary markers. However there is limited understanding of indel evolutionary patterns. We sought to characterize indel patterns focusing first on the major groups of multicellular eukaryotes. RESULTS: Comparisons of complete proteomes from a taxonically broad set of primarily Metazoa, Fungi and Viridiplantae yielded 299 substantial (>250aa) universal, single-copy (in-paralog only) proteins, from which 901 simple (present/absent) and 3,806 complex (multistate) indels were extracted. Simple indels are mostly small (1-7aa) with a most frequent size class of 1aa. However, even these simple looking indels show a surprisingly high level of hidden homoplasy (multiple independent origins). Among the apparently homoplasy-free simple indels, we identify 69 potential clade-defining indels (CDIs) that may warrant closer examination. CDIs show a very uneven taxonomic distribution among Viridiplante (13 CDIs), Fungi (40 CDIs), and Metazoa (0 CDIs). An examination of singleton indels shows an excess of insertions over deletions in nearly all examined taxa. This excess averages 2.31 overall, with a maximum observed value of 7.5 fold. CONCLUSIONS: We find considerable potential for identifying taxon-marker indels using an automated pipeline. However, it appears that simple indels in universal proteins are too rare and homoplasy-rich to be used for pure indel-based phylogeny. The excess of insertions over deletions seen in nearly every genome and major group examined maybe useful in defining more realistic gap penalties for sequence alignment. This bias also suggests that insertions in highly conserved proteins experience less purifying selection than do deletions.


Assuntos
Eucariotos/genética , Evolução Molecular , Fungos/genética , Mutação INDEL , Proteínas/genética , Viridiplantae/genética , Sequência de Aminoácidos , Animais , Eucariotos/classificação , Fungos/classificação , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Viridiplantae/classificação
13.
Nucleic Acids Res ; 40(Web Server issue): W340-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22693213

RESUMO

Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.


Assuntos
Mutação INDEL , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína , Software , Algoritmos , Internet , Proteínas/genética
14.
Protist ; 163(3): 327-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22209334

RESUMO

Dictyostelid social amoebae are a large and ancient group of soil microbes with an unusual multicellular stage in their life cycle. Taxonomically, they belong to the eukaryotic supergroup Amoebozoa, the sister group to Opisthokonta (animals + fungi). Roughly half of the ~150 known dictyostelid species were discovered during the last five years and probably many more remain to be found. The traditional classification system of Dictyostelia was completely overturned by cladistic analyses and molecular phylogenies of the past six years. As a result, it now appears that, instead of three major divisions there are eight, none of which correspond to traditional higher-level taxa. In addition to the widely studied Dictyostelium discoideum, there are now efforts to develop model organisms and complete genome sequences for each major group. Thus Dictyostelia is becoming an excellent model for both practical, medically related research and for studying basic principles in cell-cell communication and developmental evolution. In this review we summarize the latest information about their life cycle, taxonomy, evolutionary history, genome projects and practical importance.


Assuntos
Amébidos/fisiologia , Evolução Biológica , Variação Genética , Amébidos/classificação , Amébidos/genética , Amébidos/crescimento & desenvolvimento , Comunicação Celular , Filogenia
15.
BMC Evol Biol ; 11: 84, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21453486

RESUMO

BACKGROUND: Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and Dictyostelium discoideum is now one of the most widely studied eukaryotic microbial models. The first molecular phylogeny of Dictyostelia included most of the species known at the time and suggested an extremely deep taxon with a molecular depth roughly equivalent to Metazoa. The group was also shown to consist of four major clades, none of which correspond to traditional genera. Potential morphological justification was identified for three of the four major groups, on the basis of which tentative names were assigned. RESULTS: Over the past four years, the Mycetozoan Global Biodiversity Survey has identified many new isolates that appear to be new species of Dictyostelia, along with numerous isolates of previously described species. We have determined 18S ribosomal RNA gene sequences for all of these new isolates. Phylogenetic analyses of these data show at least 50 new species, and these arise from throughout the dictyostelid tree breaking up many previously isolated long branches. The resulting tree now shows eight well-supported major groups instead of the original four. The new species also expand the known morphological diversity of the previously established four major groups, violating nearly all previously suggested deep morphological patterns. CONCLUSIONS: A greatly expanded phylogeny of Dictyostelia now shows even greater morphological plasticity at deep taxonomic levels. In fact, there now seem to be no obvious deep evolutionary trends across the group. However at a finer level, patterns in morphological character evolution are beginning to emerge. These results also suggest that there is a far greater diversity of Dictyostelia yet to be discovered, including novel morphologies.


Assuntos
Dictyosteliida/citologia , Dictyosteliida/genética , Filogenia , Evolução Biológica , Dictyosteliida/classificação , RNA de Protozoário/genética , RNA Ribossômico/genética
16.
Mycologia ; 103(1): 101-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20943559

RESUMO

In late Jan and early Feb 2005 samples for isolation of dictyostelid cellular slime molds (dictyostelids) were collected in five different provinces and from six national parks (all located 39-55°S) in Patagonia and Tierra del Fuego, Argentina. Southern beech (Nothofagus) forests represented the primary vegetation type investigated, but some samples were obtained from Patagonian steppe, alpine meadows, Valdivian temperate rainforests and coniferous forests dominated by Araucaria, Austrocedrus and Fitzroya. Among the dictyostelids isolated from the samples we collected were seven species new to science. These species (Dictyostelium austroandinum, D. chordatum, D. fasciculoideum, D. gargantuum, D. leptosomopsis, D. valdivianum and Polysphondylium patagonicum) are described herein on the basis of both morphology and molecular (SSU rDNA) data. One of the new species, D. gargantuum, is one of the largest representatives of the group reported to date. Another unusual species, D. chordatum, produces long interwoven sorocarps that do not appear to respond to a spacing gas similar to the condition first noted in D. implicatum.


Assuntos
Dictyostelium/classificação , Microbiologia do Solo , Argentina , Sequência de Bases , DNA de Protozoário/química , DNA de Protozoário/genética , Dictyostelium/genética , Dictyostelium/isolamento & purificação , Dictyostelium/ultraestrutura , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico/química , RNA Ribossômico/genética , Alinhamento de Sequência
17.
Mol Biol Evol ; 28(3): 1281-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21097998

RESUMO

Protein synthesis elongation factor G (EF-G) is an essential protein with central roles in both the elongation and ribosome recycling phases of protein synthesis. Although EF-G evolution is predicted to be conservative, recent reports suggest otherwise. We have characterized EF-G in terms of its molecular phylogeny, genomic context, and patterns of amino acid substitution. We find that most bacteria carry a single "canonical" EF-G, which is phylogenetically conservative and encoded in an str operon. However, we also find a number of EF-G paralogs. These include a pair of EF-Gs that are mostly found together and in an eclectic subset of bacteria, specifically δ-proteobacteria, spirochaetes, and planctomycetes (the "spd" bacteria). These spdEFGs have also given rise to the mitochondrial factors mtEFG1 and mtEFG2, which probably arrived in eukaryotes before the eukaryotic last common ancestor. Meanwhile, chloroplasts apparently use an α-proteobacterial-derived EF-G rather than the expected cyanobacterial form. The long-term comaintenance of the spd/mtEFGs may be related to their subfunctionalization for translocation and ribosome recycling. Consistent with this, patterns of sequence conservation and site-specific evolutionary rate shifts suggest that the faster evolving spd/mtEFG2 has lost translocation function, but surprisingly, the protein also shows little conservation of sites related to recycling activity. On the other hand, spd/mtEFG1, although more slowly evolving, shows signs of substantial remodeling. This is particularly extensive in the GTPase domain, including a highly conserved three amino acid insertion in switch I. We suggest that subfunctionalization of the spd/mtEFGs is not a simple case of specialization for subsets of original activities. Rather, the duplication allows the release of one paralog from the selective constraints imposed by dual functionality, thus allowing it to become more highly specialized. Thus, the potential for fine tuning afforded by subfunctionalization may explain the maintenance of EF-G paralogs.


Assuntos
Evolução Biológica , Fator G para Elongação de Peptídeos/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Animais , Cloroplastos/genética , Cloroplastos/metabolismo , Sequência Conservada/genética , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos/metabolismo , Filogenia , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Spirochaetales/genética , Spirochaetales/metabolismo
18.
BMC Evol Biol ; 10: 109, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20423463

RESUMO

BACKGROUND: The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification. RESULTS: The supertrees most supported by the underlying input trees are produced using matrix representation with compatibility (MRC) (from an all-in and a compartmentalised analysis). Whilst relationships at the tips of the tree tend to be well supported, those along the backbone of the tree (e.g. between Parasitica superfamilies) are generally not. Ten significant shifts in diversification (six positive and four negative) are found common to both MRC supertrees. The Apocrita (wasps, ants, bees) experienced a positive shift at their origin accounting for approximately 4,000 species. Within Apocrita other positive shifts include the Vespoidea (vespoid wasps/ants containing 24,000 spp.), Anthophila + Sphecidae (bees/thread-waisted wasps; 22,000 spp.), Bethylidae + Chrysididae (bethylid/cuckoo wasps; 5,200 spp.), Dryinidae (dryinid wasps; 1,100 spp.), and Proctotrupidae (proctotrupid wasps; 310 spp.). Four relatively species-poor families (Stenotritidae, Anaxyelidae, Blasticotomidae, Xyelidae) have undergone negative shifts. There are some two-way shifts in diversification where sister taxa have undergone shifts in opposite directions. CONCLUSIONS: Our results suggest that numerous phylogenetically distinctive radiations contribute to the richness of large clades. They also suggest that evolutionary events restricting the subsequent richness of large clades are common. Problematic phylogenetic issues in the Hymenoptera are identified, relating especially to superfamily validity (e.g. "Proctotrupoidea", "Mymarommatoidea"), and deeper apocritan relationships. Our results should stimulate new functional studies on the causes of the diversification shifts we have identified. Possible drivers highlighted for specific adaptive radiations include key anatomical innovations, the exploitation of rich host groups, and associations with angiosperms. Low richness may have evolved as a result of geographical isolation, specialised ecological niches, and habitat loss or competition.


Assuntos
Especiação Genética , Himenópteros/classificação , Himenópteros/genética , Animais , Filogenia
19.
Protist ; 161(4): 539-48, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20303322

RESUMO

The dictyostelids possess a complex life cycle including aggregative and multicellular stages. They also include one of the most widely studied protistan model organisms, Dictyostelium discoideum. The current molecular phylogeny of dictyostelids is based largely on SSU (18S) rDNA sequences and shows a deep taxon consisting of four major groups, none of which correspond to the three traditional morphologically-defined genera. However, due to the generally slowly evolving nature of SSU rDNA, these data fail to resolve the majority of branches within the four groups. Given the highly morphologically mixed nature of the dictyostelid groups, it is important to resolve relationships within them. We have determined sequences for the internal transcribed spacers (ITS) of rDNA for nearly all species in the original dictyostelid global phylogeny. Phylogenetic analyses of these data, in combination with the previously determined SSU rDNA sequences, confidently resolve nearly all branches in the tree. This now fully resolved phylogeny confirms the utility of ITS for dictyostelid systematics and lays the ground work for further evolutionary study of the group.


Assuntos
Dictyosteliida/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Dictyosteliida/genética , Filogenia
20.
Proc Biol Sci ; 277(1687): 1597-606, 2010 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-20129983

RESUMO

Comprising over half of all described species, the hexapods are central to understanding the evolution of global biodiversity. Direct fossil evidence suggests that new hexapod orders continued to originate from the Jurassic onwards, and diversity is presently higher than ever. Previous studies also suggest that several shifts in net diversification rate have occurred at higher taxonomic levels. However, their inferred timing is phylogeny dependent. We re-examine these issues using the supertree approach to provide, to our knowledge, the first composite estimates of hexapod order-level phylogeny. The Purvis matrix representation with parsimony method provides the most optimal supertree, but alternative methods are considered. Inferring ghost ranges shows richness of terminal lineages in the order-level phylogeny to peak just before the end-Permian extinction, rather than the present day, indicating that at least 11 more lineages survived this extinction than implied by fossils alone. The major upshift in diversification is associated with the origin of wings/wing folding and for the first time, to our knowledge, significant downshifts are shown associated with the origin of species-poor taxa (e.g. Neuropterida, Zoraptera). Polyneopteran phylogeny, especially the position of Zoraptera, remains important resolve because this influences findings regarding shifts in diversification. Our study shows how combining fossil with phylogenetic information can improve macroevolutionary inferences.


Assuntos
Evolução Biológica , Extinção Biológica , Insetos , Animais , Biodiversidade , Fósseis , Variação Genética , Insetos/classificação , Insetos/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA