Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(11): e2100059, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890419

RESUMO

Oxidative stress, which is one of the main harmful mechanisms of pathologies including ischemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants are tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, the objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity. This study reports the synthesis and characterization of functional polymers and their impact on the enzyme-like catalytic activity of CNPs. To study the toxicity and the antioxidant properties of CNPs for stroke and particularly endothelial damages, in vitro studies are conducted on a cerebral endothelial cell line (bEnd.3). Despite their internalization in bEnd.3 cells, coated CNPs are devoid of cytotoxicity. Microscopy studies report an intracellular localization of CNPs, more precisely in endosomes. All CNPs reduces glutamate-induced intracellular production of reactive oxygen species (ROS) in endothelial cells but one CNP significantly reduces both the production of mitochondrial superoxide anion and DNA oxidation. In vivo studies report a lack of toxicity in mice. This study therefore describes and identifies biocompatible CNPs with interesting antioxidant properties for ischemic stroke and related pathologies.


Assuntos
Cério , Nanopartículas , Animais , Antioxidantes/farmacologia , Cério/toxicidade , Células Endoteliais , Humanos , Camundongos , Polímeros
2.
ACS Appl Mater Interfaces ; 12(37): 42056-42066, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812730

RESUMO

Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer-coated cerium oxide nanoparticles are prepared by the association of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG)-grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase-, and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not affect the superoxide dismutase-like, impair the catalase-like and oxidase-like, and surprisingly improves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid)-coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphonic acids as anchoring groups at the particle surface.


Assuntos
Resinas Acrílicas/química , Cério/química , Nanopartículas/química , Polietilenoglicóis/química , Catalase/química , Catalase/metabolismo , Catálise , Oxirredutases/química , Oxirredutases/metabolismo , Tamanho da Partícula , Peroxidase/química , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície
4.
PLoS One ; 11(4): e0153716, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116554

RESUMO

S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1ß levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease.


Assuntos
Derivados da Hipromelose/administração & dosagem , Doenças Periodontais/tratamento farmacológico , S-Nitrosoglutationa/administração & dosagem , Administração Tópica , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Animais , Modelos Animais de Doenças , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico Sintase Tipo II/metabolismo , Doenças Periodontais/metabolismo , Doenças Periodontais/patologia , Ratos , Ratos Wistar , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Soluções , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Anal Chem ; 88(6): 3115-20, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26892256

RESUMO

S-Nitrosothiols (RSNOs) are carriers of nitric oxide (NO) and have important biological activities. We propose here the use of gold nanoparticles (AuNPs) and NO-selective amperometric microsensor for the detection and quantification of S-nitrosoglutathione (GSNO) as a step toward the determination of plasma RSNOs. AuNPs were used to decompose RSNOs with the quantitative release of free NO which was selectively detected with a NO microsensor. The optimal [GSNO]/[AuNPs] ratio was determined, corresponding to an excess of AuNP surface relative to the molar GSNO amount. Moreover, the influence of free plasma thiols on this method was investigated and a protocol based on the blocking of free thiols with iodoacetic acid, forming the carboxymethyl derivative of the cysteine residues, is proposed.


Assuntos
Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas , S-Nitrosoglutationa/análise , S-Nitrosotióis/sangue , Humanos
6.
PLoS One ; 9(12): e113378, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478918

RESUMO

INTRODUCTION: Mucositis induced by anti-neoplastic drugs is an important, dose-limiting and costly side-effect of cancer therapy. AIM: To evaluate the effect of the topical application of S-nitrosoglutathione (GSNO), a nitric oxide donor, on 5-fluorouracil (5-FU)-induced oral mucositis in hamsters. MATERIALS AND METHODS: Oral mucositis was induced in male hamsters by two intraperitoneal administrations of 5-FU on the first and second days of the experiment (60 and 40 mg/kg, respectively) followed by mechanical trauma on the fourth day. Animals received saline, HPMC or HPMC/GSNO (0.1, 0.5 or 2.0 mM) 1 h prior to the 5-FU injection and twice a day for 10 or 14 days. Samples of cheek pouches were harvested for: histopathological analysis, TNF-α and IL-1ß levels, immunohistochemical staining for iNOS, TNF-α, IL-1ß, Ki67 and TGF-ß RII and a TUNEL assay. The presence and levels of 39 bacterial taxa were analyzed using the Checkerboard DNA-DNA hybridization method. The profiles of NO released from the HPMC/GSNO formulations were characterized using chemiluminescence. RESULTS: The HPMC/GSNO formulations were found to provide sustained release of NO for more than 4 h at concentration-dependent rates of 14 to 80 nmol/mL/h. Treatment with HPMC/GSNO (0.5 mM) significantly reduced mucosal damage, inflammatory alterations and cell death associated with 5-FU-induced oral mucositis on day 14 but not on day 10. HPMC/GSNO administration also reversed the inhibitory effect of 5-FU on cell proliferation on day 14. In addition, we observed that the chemotherapy significantly increased the levels and/or prevalence of several bacterial species. CONCLUSION: Topical HPMC/GSNO accelerates mucosal recovery, reduces inflammatory parameters, speeds up re-epithelization and decreases levels of periodontopathic species in mucosal ulcers.


Assuntos
Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , S-Nitrosoglutationa/administração & dosagem , Estomatite/tratamento farmacológico , Administração Tópica , Animais , Cricetinae , Modelos Animais de Doenças , Fluoruracila/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/biossíntese , Masculino , Neoplasias/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Estomatite/induzido quimicamente , Estomatite/genética , Estomatite/patologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
7.
Mol Ther ; 19(7): 1245-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21364542

RESUMO

Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Interleucina-12/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Tetraciclina/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases , Linhagem Celular , Doxiciclina/farmacologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Genética/métodos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Interferon gama , Interleucina-12/genética , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA