RESUMO
For over a decade, the European Group for the Study of Resistant Depression (GSRD) has examined single nucleotide polymorphisms (SNP) and clinical parameters in regard to treatment outcome. However, an interaction based model combining these factors has not been established yet. Regarding the low effect of individual SNPs, a model investigating the interactive role of SNPs and clinical variables in treatment-resistant depression (TRD) seems auspicious. Thus 225 patients featured in previous work of the GSRD were enrolled in this investigation. According to data availability and previous positive results, 12 SNPs in HTR2A, COMT, ST8SIA2, PPP3CC and BDNF as well as 8 clinical variables featured in other GSRD studies were chosen for this investigation. Random forests algorithm were used for variable shrinkage and k-means clustering for surfacing variable characteristics determining treatment outcome. Using these machine learning and clustering algorithms, we detected a set of 3 SNPs and a clinical variable that was significantly associated with treatment response. About 62% of patients exhibiting the allelic combination of GG-GG-TT for rs6265, rs7430 and rs6313 of the BDNF, PPP3CC and HTR2A genes, respectively, and without melancholia showed a HAM-D decline under 17 compared to about 34% of the whole study sample. Our random forests prediction model for treatment outcome showed that combining clinical and genetic variables gradually increased the prediction performance recognizing correctly 25% of responders using all 4 factors. Thus, we could confirm our previous findings and furthermore show the strength of an interaction-based model combining statistical algorithms in identifying and operating treatment predictors.
Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/genética , Farmacogenética , Polimorfismo de Nucleotídeo Único/genética , Algoritmos , Fator Neurotrófico Derivado do Encéfalo/genética , Calcineurina/genética , Catecol O-Metiltransferase/genética , Análise por Conglomerados , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor 5-HT2A de Serotonina/genética , Sialiltransferases/genética , Resultado do TratamentoRESUMO
Serotonergic neurotransmission is thought to underlie a dynamic interrelation between different key structures of the serotonin system. The serotonin transporter (SERT), which is responsible for the reuptake of serotonin from the synaptic cleft into the neuron, as well as the serotonin-1A (5-HT1A) and -1B (5-HT1B) receptors, inhibitory auto-receptors in the raphe region and projection areas, respectively, are likely to determine serotonin release. Thereby, they are involved in the regulation of extracellular serotonin concentrations and the extent of serotonergic effects in respective projection areas. Complex receptor interactions can be assessed in vivo with positron emission tomography (PET) and single-nucleotide-polymorphisms, which are thought to alter protein expression levels. Due to the complexity of the serotonergic system, gene × gene interactions are likely to regulate transporter and receptor expression and therefore subsequently serotonergic transmission. In this context, we measured 51 healthy subjects (mean age 45.5 ± 12.9, 38 female) with PET using [carbonyl-(11)C]WAY-100635 to determine 5-HT1A receptor binding potential (5-HT1A BPND). Genotyping for rs6296 (HTR1B) and 5-HTTLPR (SERT gene promoter polymorphism) was performed using DNA isolated from whole blood. Voxel-wise whole-brain ANOVA revealed a positive interaction effect of genotype groups (5-HTTLPR: LL, LS+SS and HTR1B: rs6296: CC, GC+GG) on 5-HT1A BPND with peak t-values in the bilateral parahippocampal gyrus. More specifically, highest 5-HT1A BPND was identified for individuals homozygous for both the L-allele of 5-HTTLPR and the C-allele of rs6296. This finding suggests that the interaction between two major serotonergic structures involved in serotonin release, specifically the SERT and 5-HT1B receptor, results in a modification of the inhibitory serotonergic tone mediated via 5-HT1A receptors.
Assuntos
Encéfalo/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Ligação Proteica , Piridinas , Antagonistas da SerotoninaRESUMO
Social anxiety disorder (SAD) is characterized by over-reactivity of fear-related circuits in social or performance situations and associated with marked social impairment. We used dynamic causal modeling (DCM), a method to evaluate effective connectivity, to test our hypothesis that SAD patients would exhibit dysfunctions in the amygdala-prefrontal emotion regulation network. Thirteen unmedicated SAD patients and 13 matched healthy controls performed a series of facial emotion and object discrimination tasks while undergoing fMRI. The emotion-processing network was identified by a task-related contrast and motivated the selection of the right amygdala, OFC, and DLPFC for DCM analysis. Bayesian model averaging for DCM revealed abnormal connectivity between the OFC and the amygdala in SAD patients. In healthy controls, this network represents a negative feedback loop. In patients, however, positive connectivity from OFC to amygdala was observed, indicating an excitatory connection. As we did not observe a group difference of the modulatory influence of the FACE condition on the OFC to amygdala connection, we assume a context-independent reduction of prefrontal control over amygdalar activation in SAD patients. Using DCM, it was possible to highlight not only the neuronal dysfunction of isolated brain regions, but also the dysbalance of a distributed functional network.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Discriminação Psicológica/fisiologia , Expressão Facial , Reconhecimento Visual de Modelos/fisiologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Teorema de Bayes , Mapeamento Encefálico , Emoções/fisiologia , Face , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Processamento de Sinais Assistido por ComputadorRESUMO
BACKGROUND: Women are two times more likely to be diagnosed with depression than men. Sex hormones modulating serotonergic transmission are proposed to partly underlie these epidemiologic findings. Here, we used the cross-sex steroid hormone treatment of transsexuals seeking sex reassignment as a model to investigate acute and chronic effects of testosterone and estradiol on serotonin reuptake transporter (SERT) binding in female-to-male and male-to-female transsexuals. METHODS: Thirty-three transsexuals underwent [(11)C]DASB positron emission tomography before start of treatment, a subset of which underwent a second scan 4 weeks and a third scan 4 months after treatment start. SERT nondisplaceable binding potential was quantified in 12 regions of interest. Treatment effects were analyzed using linear mixed models. Changes of hormone plasma levels were correlated with changes in regional SERT nondisplaceable binding potential. RESULTS: One and 4 months of androgen treatment in female-to-male transsexuals increased SERT binding in amygdala, caudate, putamen, and median raphe nucleus. SERT binding increases correlated with treatment-induced increases in testosterone levels, suggesting that testosterone increases SERT expression on the cell surface. Conversely, 4 months of antiandrogen and estrogen treatment in male-to-female transsexuals led to decreases in SERT binding in insula, anterior, and mid-cingulate cortex. Increases in estradiol levels correlated negatively with decreases in regional SERT binding, indicating a protective effect of estradiol against SERT loss. CONCLUSIONS: Given the central role of the SERT in the treatment of depression and anxiety disorders, these findings may lead to new treatment modalities and expand our understanding of the mechanism of action of antidepressant treatment properties.
Assuntos
Androgênios/administração & dosagem , Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Testosterona/administração & dosagem , Pessoas Transgênero/classificação , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Putamen/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Adulto JovemRESUMO
BACKGROUND: Recently, Silexan, a patented active substance comprised of an essential oil produced from Lavandula angustifolia flowers, has been authorized in Germany as a medicinal product for the treatment of states of restlessness related to anxious mood. Its efficacy has been shown in several forms of anxiety disorders. Findings from preclinical and clinical studies attribute a major role to the serotonin-1A receptor in the pathogenesis and treatment of anxiety. METHODS: To elucidate the effect of Silexan on serotonin-1A receptor binding, 17 healthy men underwent 2 positron emission tomography measurements using the radioligand [carbonyl-(11)C]WAY-100635 following the daily intake of 160 mg Silexan or placebo for a minimum of 8 weeks (randomized, double-blind, cross-over design). Additionally, structural magnetic resonance imaging and voxel-based morphometry analysis was performed to determine potential effects on gray matter microstructure. RESULTS: Serotonin-1A receptor binding potential was shown to be significantly reduced following the intake of Silexan compared with placebo in 2 large clusters encompassing the temporal gyrus, the fusiform gyrus and the hippocampus on one hand as well as the insula and anterior cingulate cortex on the other hand. No effects of Silexan on gray matter volume could be detected in this investigation. CONCLUSION: This positron emission tomography study proposes an involvement of the serotonin-1A receptor in the anxiolytic effects of Silexan. The study was registered in the International Standard Randomized Controlled Trial Number Register as ISRCTN30885829 (http://www.controlled-trials.com/isrctn/).
Assuntos
Ansiolíticos/farmacologia , Encéfalo/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudos Cross-Over , Método Duplo-Cego , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Lavandula , Imageamento por Ressonância Magnética , Masculino , Piperazinas , Tomografia por Emissão de Pósitrons , Piridinas , Compostos Radiofarmacêuticos , Adulto JovemRESUMO
BACKGROUND: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) may impact on the in-vivo binding of important serotonergic structures such as the serotonin transporter (5-HTT) and the serotonin-1A (5-HT1A) receptor. Previous positron emission tomography (PET) studies on the association between Val66Met and 5-HTT and 5-HT1A binding potential (BPND) have demonstrated equivocal results. METHODS: We conducted an imaging genetics study investigating the effect of Val66Met genotype on 5-HTT or 5-HT1A BPND in 92 subjects. Forty-one subjects (25 healthy subjects and 16 depressive patients) underwent genotyping for Val66Met and PET imaging with the 5-HTT specific radioligand [11C]DASB. Additionally, in 51 healthy subjects Val66Met genotypes and 5-HT1A binding with the radioligand [carbonyl-11C]WAY-100635 were ascertained. Voxel-wise and region of interest-based analyses of variance were used to examine the influence of Val66Met on 5-HTT and 5-HT1A BPND. RESULTS: No significant differences of 5-HTT nor 5-HT1A BPND between BDNF Val66Met genotype groups (val/val vs. met-carrier) were detected. There was no interaction between depression and Val66Met genotype status. CONCLUSION: In line with previous data, our work confirms an absent effect of BDNF Val66Met on two major serotonergic structures. These results could suggest that altered protein expression associated with genetic variants, might be compensated in vivo by several levels of unknown feedback mechanisms. In conclusion, Val66Met genotype status is not associated with changes of in-vivo binding of 5-HTT and 5-HT1A receptors in human subjects.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Depressivo/genética , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina/metabolismo , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Compostos de Anilina/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estudos de Casos e Controles , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Feminino , Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/farmacologia , Tomografia por Emissão de Pósitrons , Ligação Proteica , Piridinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sulfetos/farmacologiaRESUMO
Depressive disorder is frequently accompanied by changes in psychomotor activity and disturbances of the sleep-wake cycle. The chronobiological effects of electroconvulsive therapy (ECT) in patients with treatment-resistant depression (TRD) are largely unknown. The objective of the current study was to measure the influence of ECT on patients' activity and sleep. 15 patients with unipolar TRD were treated with ECT. Activity levels were measured with wrist actigraphy before and after ECT. Remission rate (score on the 17-item Hamilton Depression Rating Scale lower than 8 points) was 40.0%. Remitters had increases of 56.0% on light activity, 49.8% on total activity, and 70.2% on circadian amplitude, while there was no significant change of these variables in subjects who did not experience remission. The circadian acrophase and actigraphic sleep-parameters were not significantly affected by treatment.
Assuntos
Actigrafia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Resistente a Tratamento/terapia , Eletroconvulsoterapia/métodos , Sono , Adulto , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Resistente a Tratamento/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Recidiva , Resultado do Tratamento , Adulto JovemRESUMO
Preclinical research and clinical experience point to a modulation of 5-HT1A receptor expression by gonadal steroid hormones. We examined the effect of estradiol, progesterone and DHEAS on serotonin neurotransmission in 16 premenopausal and 28 postmenopausal women, differentiating by reproductive status. By means of positron emission tomography and the radiotracer [carbonyl-(11)C]WAY-100635, the 5-HT1A receptor binding potential (BP) was quantified in 45 brain regions of interest. Median BP was used as a surrogate marker to estimate the whole brain effect of the steroid hormones on receptor binding. We found a strong negative effect of serum progesterone and DHEAS levels on 5-HT1A receptor binding in postmenopausal women both in the Median BP and on a regional level. Furthermore, there was a non-linear, U-shaped relationship between DHEAS levels and 5-HT1A receptor binding in the pooled sample. Presynaptic 5-HT1A receptor BP in the raphe nuclei was significantly explained in a non-linear way by both progesterone and DHEAS in the pooled sample. Our study confirms in humans a preclinically suggested relation of the steroid hormones progesterone and DHEAS to 5-HT1A receptor binding. We show differential effects of the hormones with regard to reproductive hormonal status. Non-linear, U-shaped relationships between hormone serum concentrations and serotonin neurotransmission might explain paradoxical effects of these hormones on mood.
Assuntos
Sulfato de Desidroepiandrosterona/sangue , Menopausa/metabolismo , Pós-Menopausa/metabolismo , Progesterona/sangue , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Estradiol/sangue , Feminino , Fase Folicular/metabolismo , Humanos , Hidrocortisona/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto JovemRESUMO
Preclinical research points to a strong modulatory influence of gonadal hormones on the serotonin system. However, human data corroborating this association remains scarce. The aim of this study was to examine the effects of hormone replacement therapy on 5-HT1A receptor binding in postmenopausal women using positron emission tomography (PET) and the radioligand [carbonyl-(11)C]WAY-100635. In this randomized, double-blind, longitudinal study, 30 postmenopausal women underwent treatment with either a combination of oral 17ß-estradiol valerate and micronized progesterone (group 1, n=10), oral 17ß-estradiol valerate (group 2, n=10), or placebo (group 3, n=10). Two PET measurements were performed, one the day before treatment start and the second after at least eight weeks of treatment. Plasma levels of estradiol (E2), progesterone (P4), sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were collected prior to PET measurements. As expected, hormone replacement therapy led to a significant increase in E2 and P4 plasma levels in group 1 and to a significant increase in E2 levels in group 2. The 5-HT1A receptor binding did not change significantly after estrogen, combined estrogen/progesterone treatment or placebo in any of the investigated brain regions. There were no significant correlations between changes in E2 or P4 values and changes in 5-HT1A receptor binding. Although we were not able to confirm effects of gonadal hormone treatment on 5-HT1A receptor binding, our data do not preclude associations between sex steroid levels and serotonin, the neurotransmitter implicated most strongly in the pathogenesis of affective and anxiety disorders. ClinicalTrials.gov Identifier: NCT00755963.
Assuntos
Radioisótopos de Carbono/farmacocinética , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Terapia de Reposição de Estrogênios , Piperazinas/farmacocinética , Piridinas/farmacocinética , Receptor 5-HT1A de Serotonina/metabolismo , Idoso , Sulfato de Desidroepiandrosterona/sangue , Método Duplo-Cego , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Pós-Menopausa/sangue , Pós-Menopausa/efeitos dos fármacos , Progesterona/sangue , Ligação Proteica , Globulina de Ligação a Hormônio Sexual/metabolismoRESUMO
OBJECTIVES: Electroconvulsive therapy (ECT) is a well-established effective treatment strategy in treatment-refractory depression. However, despite ECT's widespread use, the exact neurobiological mechanisms underlying its efficacy are not fully understood. Over the past 3 decades, extensive work in rodents, primates, and humans has begun to delineate the impact of electroconvulsive seizures (ECS) and ECT on neurotransmission systems commonly implicated in depression. In the current review, we will focus on two major biogenic amine systems, namely serotonin and dopamine. METHODS: The database of PubMed was searched for preclinical studies describing the effects of ECS on the serotonergic and dopaminergic system using behavioral sensitization paradigms, in vivo brain microdialysis, messenger RNA and protein expression, electrophysiology, and positron emission tomography. Additionally, human data describing ECT's effects on neurotransmitter turnover, receptor binding, and functional imaging were reviewed together with relevant genetic association studies. RESULTS: Literature research resulted in 40 published original studies related to ECS/ECT and the serotonergic system, whereby only three were studies in humans. Regarding dopamine, 15 preclinical and 12 human studies were found in PubMed database. CONCLUSIONS: Converging data obtained from genetic and imaging studies in humans have corroborated many of the earlier preclinical and clinical findings relating to enhancement of serotonergic neurotransmission and activation of the mesocorticolimbic dopamine system after ECS/ECT. Moreover, it seems that these effects are evident at various levels, including neurotransmitter release, receptor binding, and overall neurotransmission. Future studies combining convergent modalities could enhance our understanding of the mechanisms underlying ECT's profound antidepressant effect and would support the development of better pharmacological and somatic treatment approaches for refractory depression.
Assuntos
Dopamina/metabolismo , Eletroconvulsoterapia/métodos , Convulsões/terapia , Serotonina/metabolismo , Animais , Humanos , Neurotransmissores/fisiologia , Convulsões/metabolismoRESUMO
Suffering from anhedonia, patients with major depressive disorder (MDD) exhibit alterations in several parts of the serotonergic neurotransmitter system, which are in turn involved in reward processing. However, previous investigations of the serotonin transporter (SERT) focused on regional differences with varying results depending on the clinical syndrome. Here, we aimed to describe the serotonergic system of MDD patients on a network level by evaluating SERT associations across brain regions. Twenty medication free patients with major depression and 20 healthy controls underwent positron emission tomography using the radioligand [(11) C]DASB. SERT binding potentials (BPND ) were quantified voxel-wise with the multilinear reference tissue model 2. In addition, SERT BPND was extracted from the dorsal raphe nucleus (DRN) as an indicator of midbrain serotonergic neurotransmission. Whole-brain linear regression analysis was applied to evaluate the association of DRN SERT bindings to those in projection areas, which was followed by ANCOVA to assess differences in interregional relationships between patients and controls. Although both groups showed widespread positive correlations, group differences were restricted to decreased SERT associations between the DRN and the ventral striatum (right and left respectively: t=5.85, P<0.05 corrected and t=5.07, P<0.1 corrected) when comparing MDD patients (R(2)=0.11 and 0.24) to healthy subjects (R(2)=0.72 and 0.66, P<0.01 and 0.05 corrected). Adjusting for age and sex did not change these findings. This study indicates a disturbed regulation between key regions involved in reward processing via the SERT. Our interregional approach highlights the importance of evaluating pathophysiological alterations on a network level to gain complementary information in addition to regional investigations.
Assuntos
Transtorno Depressivo Maior/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estriado Ventral/metabolismo , Adulto , Benzilaminas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mapeamento Encefálico , Radioisótopos de Carbono , Transtorno Depressivo Maior/diagnóstico por imagem , Núcleo Dorsal da Rafe/diagnóstico por imagem , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Análise de Regressão , Processamento de Sinais Assistido por Computador , Fumar , Estriado Ventral/diagnóstico por imagemRESUMO
The serotonergic system modulates brain functions that are considered to underlie affective states, emotion and cognition. Several lines of evidence point towards a strong lateralization of these mental processes, which indicates similar asymmetries in associated neurotransmitter systems. Here, our aim was to investigate a potential asymmetry of the serotonin transporter distribution using positron emission tomography and the radioligand [(11)C]DASB in vivo. As brain asymmetries may differ between sexes, we further aimed to compare serotonin transporter asymmetry between females, males and male-to-female (MtF) transsexuals whose brains are considered to be partly feminized. Voxel-wise analysis of serotonin transporter binding in all groups showed both strong left and rightward asymmetries in several cortical and subcortical structures including temporal and frontal cortices, anterior cingulate, hippocampus, caudate and thalamus. Further, male controls showed a rightward asymmetry in the midcingulate cortex, which was absent in females and MtF transsexuals. The present data support the notion of a lateralized serotonergic system, which is in line with previous findings of asymmetric serotonin-1A receptor distributions, extracellular serotonin concentrations, serotonin turnover and uptake. The absence of serotonin transporter asymmetry in the midcingulate in MtF transsexuals may be attributed to an absence of brain masculinization in this region.
Assuntos
Córtex Cerebral/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transexualidade/diagnóstico por imagem , Transexualidade/patologia , Adulto , Análise de Variância , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Escalas de Graduação PsiquiátricaRESUMO
Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brain's functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brain's metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy.
Assuntos
Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/fisiologia , Rede Nervosa/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Adulto , Mapeamento Encefálico/métodos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Substância Cinzenta/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Humanos , Masculino , Imagem Multimodal/métodos , Rede Nervosa/anatomia & histologia , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Efeito Placebo , Valores de ReferênciaRESUMO
Alterations of the inhibitory serotonin-1A receptor (5-HT1A) constitute a solid finding in neuropsychiatric research, particularly in the field of mood and anxiety disorders. Manifold factors influencing the density of this receptor have been identified, e.g., steroid hormones, sunlight exposure and genetic variants of serotonin-related genes. Given the close interactions between serotonergic and dopaminergic neurotransmission, we investigated whether a common single-nucleotide-polymorphism of the catechol-O-methyltransferase (COMT) gene (VAL158MET or rs4680) coding for a key enzyme of the dopamine network that is associated with the pathogenesis of mood disorders and antidepressant treatment response, directly affects 5-HT1A receptor binding potential. Fifty-two healthy individuals (38 female, mean age ± standard deviation = 40.48 ± 14.87) were measured via positron emission tomography using the radioligand [carbonyl-(11)C]WAY-100635. Genotyping for rs4680 was performed using DNA isolated from whole blood with the MassARRAY platform of the software SEQUENOM(®). Whole brain voxel-wise ANOVA resulted in a main effect of genotype on 5-HT1A binding. Compared to A carriers (AA + AG) of rs4680, homozygote G subjects showed higher 5-HT1A binding potential in the posterior cingulate cortex (F (2,49) = 17.7, p = 0.05, FWE corrected), the orbitofrontal cortex, the anterior cingulate cortex, the insula, the amygdala and the hippocampus (voxel-level: p < 0.01 uncorrected, t > 2.4; cluster-level: p < 0.05 FWE corrected). In light of the frequently reported alterations of 5-HT1A binding in anxiety and mood disorders, this study proposes a potential implication of the COMT genotype, more specifically the VAL158MET polymorphism, via modulation of the serotonergic neurotransmission.
Assuntos
Encéfalo/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Ligação ProteicaRESUMO
Blocking of the serotonin transporter (SERT) represents the initial mechanism of action of selective serotonin reuptake inhibitors (SSRIs) which can be visualized due to the technical proceedings of SERT occupancy studies. When compared to the striatum, higher SERT occupancy in the midbrain and lower values in the thalamus were reported. This indicates that occupancy might be differently distributed throughout the brain, which is supported by preclinical findings indicating a regionally varying SERT activity and antidepressant drug concentration. The present study therefore aimed to investigate regional SERT occupancies with positron emission tomography and the radioligand [(11)C]DASB in 19 depressed patients after acute and prolonged intake of oral doses of either 10mg/day escitalopram or 20mg/day citalopram. Compared to the mean occupancy across cortical and subcortical regions, we detected increased SERT occupancies in regions commonly associated with antidepressant response, such as the subgenual cingulate, amygdala and raphe nuclei. When acute and prolonged drug intake was compared, SERT occupancies increased in subcortical areas that are known to be rich in SERT. Moreover, SERT occupancy in subcortical brain areas after prolonged intake of antidepressants was predicted by plasma drug levels. Similarly, baseline SERT binding potential seems to impact SERT occupancy, as regions rich in SERT showed greater binding reduction as well as higher residual binding. These findings suggest a region-specific distribution of SERT blockage by SSRIs and relate the postulated link between treatment response and SERT occupancy to certain brain regions such as the subgenual cingulate cortex.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/sangueRESUMO
INTRODUCTION: Image-derived input functions (IDIFs) represent a promising non-invasive alternative to arterial blood sampling for quantification in positron emission tomography (PET) studies. However, routine applications in patients and longitudinal designs are largely missing despite widespread attempts in healthy subjects. The aim of this study was to apply a previously validated approach to a clinical sample of patients with major depressive disorder (MDD) before and after electroconvulsive therapy (ECT). METHODS: Eleven scans from 5 patients with venous blood sampling were obtained with the radioligand [carbonyl-(11)C]WAY-100635 at baseline, before and after 11.0±1.2 ECT sessions. IDIFs were defined by two different image reconstruction algorithms 1) OSEM with subsequent partial volume correction (OSEM+PVC) and 2) reconstruction based modelling of the point spread function (TrueX). Serotonin-1A receptor (5-HT1A) binding potentials (BPP, BPND) were quantified with a two-tissue compartment (2TCM) and reference region model (MRTM2). RESULTS: Compared to MRTM2, good agreement in 5-HT1A BPND was found when using input functions from OSEM+PVC (R(2)=0.82) but not TrueX (R(2)=0.57, p<0.001), which is further reflected by lower IDIF peaks for TrueX (p<0.001). Following ECT, decreased 5-HT1A BPND and BPP were found with the 2TCM using OSEM+PVC (23%-35%), except for one patient showing only subtle changes. In contrast, MRTM2 and IDIFs from TrueX gave unstable results for this patient, most probably due to a 2.4-fold underestimation of non-specific binding. CONCLUSIONS: Using image-derived and venous input functions defined by OSEM with subsequent PVC we confirm previously reported decreases in 5-HT1A binding in MDD patients after ECT. In contrast to reference region modeling, quantification with image-derived input functions showed consistent results in a clinical setting due to accurate modeling of non-specific binding with OSEM+PVC.
Assuntos
Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Processamento de Imagem Assistida por Computador , Piperazinas , Tomografia por Emissão de Pósitrons , Piridinas , Veias/fisiopatologia , Algoritmos , Radioisótopos de Carbono , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Receptor 5-HT1A de Serotonina/metabolismoRESUMO
Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas.
Assuntos
Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico/métodos , Discriminação Psicológica/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Adulto , Algoritmos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The BOLD signal measured in fMRI studies depends not only on neuronal activity, but also on other parameters like tissue vascularization, which may vary between subjects and between brain regions. A correction for variance from vascularization effects can thus lead to improved group statistics by reducing inter-subject variability. The fractional amplitude of low-frequency fluctuations (fALFF) as determined in a resting-state scan has been shown to be dependent on vascularization. Here we present a correction method termed RESCALE (REsting-state based SCALing of parameter Estimates) that uses local information to compute a voxel-wise scaling factor based on the correlation structure of fALFF and task activation parameter estimates from within a cube of 3 × 3 × 3 surrounding that voxel. The scaling method was used on a visuo-motor paradigm and resulted in a consistent increase in t-values in all task-activated cortical regions, with increases in peak t-values of 37.0% in the visual cortex and 12.7% in the left motor cortex. The RESCALE method as proposed herein can be easily applied to all task-based fMRI group studies provided that resting-state data for the same subject group is also acquired.
Assuntos
Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Córtex Visual/fisiologia , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
A characterizing symptom of social anxiety disorder (SAD) is increased emotional reactivity towards potential social threat in combination with impaired emotion and stress regulation. While several neuroimaging studies have linked SAD with hyperreactivity in limbic brain regions when exposed to emotional faces, little is known about habituation in both the amygdala and neocortical regulation areas. 15 untreated SAD patients and 15 age- and gender-matched healthy controls underwent functional magnetic resonance imaging during repeated blocks of facial emotion ([Formula: see text]) and object discrimination tasks ([Formula: see text]). Emotion processing networks were defined by a task-related contrast ([Formula: see text]). Linear regression was employed for assessing habituation effects in these regions. In both groups, the employed paradigm robustly activated the emotion processing and regulation network, including the amygdalae and orbitofrontal cortex (OFC). Statistically significant habituation effects were found in the amygdalae, OFC, and pulvinar thalamus of SAD patients. No such habituation was found in healthy controls. Concurrent habituation in the medial OFC and the amygdalae of SAD patients as shown in this study suggests intact functional integrity and successful short-term down-regulation of neural activation in brain areas responsible for emotion processing. Initial hyperactivation may be explained by an insufficient habituation to new stimuli during the first seconds of exposure. In addition, our results highlight the relevance of the orbitofrontal cortex in social anxiety disorders.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Lobo Frontal/fisiopatologia , Habituação Psicofisiológica , Imageamento por Ressonância Magnética , Adolescente , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Animal models revealed that the serotonin-1A (5-HT(1A)) receptor modulates gray matter structure. However, there is a lack of evidence showing the relationship between 5-HT(1A) receptor concentration and gray matter in the human brain in vivo. Here, to demonstrate an association between the 5-HT(1A) receptor binding potential, an index for receptor concentration, and the local gray matter volume (GMV), an index for gray matter structure, we measured 35 healthy subjects with both positron emission tomography (PET) and structural magnetic resonance imaging (MRI). We found that regional heteroreceptor binding was positively associated with GMV in distinctive brain regions such as the hippocampi and the temporal cortices in both hemispheres (R(2) values ranged from 0.308 to 0.503, p<0.05 cluster-level FDR-corrected). Furthermore, autoreceptor binding in the midbrain raphe region was positively associated with GMV in forebrain projection sites (R(2)=0.656, p=0.001). We also observed a broad range between 5-HT(1A) receptor binding and GMV. Given the congruence of altered 5-HT(1A) receptor concentrations and GMV reduction in depression or Alzheimer's disease as reported by numerous studies, these results might provide new insights towards understanding the mechanisms behind GMV alterations observed in these brain disorders.