Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 55: 110697, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39071963

RESUMO

Identifying humans based on their behavioural patterns represents an attractive basis for access control as such patterns appear naturally, do not require a focused effort from the user side, and do not impose the additional burden of memorising passwords. One means of capturing behavioural patterns is through passive sensors laid out in a target environment. Thanks to the proliferation of the Internet of Things (IoT), sensing devices are already embedded in our everyday surroundings and represent a rich source of multimodal data. Nevertheless, collecting such data for authentication research purposes is challenging, as it entails management and synchronisation of a range of sensing devices, design of diverse tasks that would evoke different behaviour patterns, storage and pre-processing of data arriving from multiple sources, and the execution of long-lasting user activities. Consequently, to the best of our knowledge, no publicly available datasets suitable for behaviour-based authentication research exist. In this brief article, we describe the first multimodal dataset for behavioural authentication research collected in a sensor-enabled IoT setting. The dataset comprises of high-frequency accelerometer, gyroscope, and force sensor data collected from an office-like environment. In addition, the dataset contains 3D point clouds collected with wireless radar and electroencephalogram (EEG) readings from a wireless EEG cap worn by the study participants. Within the environment, 54 volunteers conducted 6 different tasks that were constructed to elicit different behaviours and different cognitive load levels, resulting in a total of 16 h of multimodal data. The richness of the dataset comprising 5 different sensing modalities, a variability of tasks including keyboard typing, hand gesturing, walking, and other activities, opens a range of opportunities for research in behaviour-based authentication, but also the understanding of the role of different tasks and cognitive load levels on human behaviour.

2.
Entropy (Basel) ; 23(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34945917

RESUMO

Spectrum sensing is an important function in radio frequency spectrum management and cognitive radio networks. Spectrum sensing is used by one wireless system (e.g., a secondary user) to detect the presence of a wireless service with higher priority (e.g., a primary user) with which it has to coexist in the radio frequency spectrum. If the wireless signal is detected, the second user system releases the given frequency to maintain the principle of not interfering. This paper proposes a machine learning implementation of spectrum sensing using the entropy measure as a feature vector. In the training phase, the information about the activity of the wireless service with higher priority is gathered, and the model is formed. In the classification phase, the wireless system compares the current sensing report to the created model to calculate the posterior probability and classify the sensing report into either the presence or absence of wireless service with higher priority. This paper proposes the novel application of the Fluctuation Dispersion Entropy (FDE) measure recently introduced in the research community as a feature vector to build the model and implement the classification. An improved implementation of the FDE (IFDE) is used to enhance the robustness to noise. IFDE is further enhanced with an adaptive method (AIFDE) to automatically select the hyper-parameter introduced in IFDE. Then, this paper combines the machine learning approach with the entropy measure approach, which are both recent developments in spectrum sensing research. The approach is compared to similar approaches in literature and the classical energy detection method using a generated radar signal data set with different conditions of SNR(dB) and fading conditions. The results show that the proposed approach is able to outperform the approaches from literature based on other entropy measures or the Energy Detector (ED) in a consistent way across different levels of SNR and fading conditions.

3.
J Imaging ; 7(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34821873

RESUMO

Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security more and more [...].

4.
Entropy (Basel) ; 22(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33286812

RESUMO

The evolution of modern automobiles to higher levels of connectivity and automatism has also increased the need to focus on the mitigation of potential cybersecurity risks. Researchers have proven in recent years that attacks on in-vehicle networks of automotive vehicles are possible and the research community has investigated various cybersecurity mitigation techniques and intrusion detection systems which can be adopted in the automotive sector. In comparison to conventional intrusion detection systems in large fixed networks and ICT infrastructures in general, in-vehicle systems have limited computing capabilities and other constraints related to data transfer and the management of cryptographic systems. In addition, it is important that attacks are detected in a short time-frame as cybersecurity attacks in vehicles can lead to safety hazards. This paper proposes an approach for intrusion detection of cybersecurity attacks in in-vehicle networks, which takes in consideration the constraints listed above. The approach is based on the application of an information entropy-based method based on a sliding window, which is quite efficient from time point of view, it does not require the implementation of complex cryptographic systems and it still provides a very high detection accuracy. Different entropy measures are used in the evaluation: Shannon Entropy, Renyi Entropy, Sample Entropy, Approximate Entropy, Permutation Entropy, Dispersion and Fuzzy Entropy. This paper evaluates the impact of the different hyperparameters present in the definition of entropy measures on a very large public data set of CAN-bus traffic with millions of CAN-bus messages with four different types of attacks: Denial of Service, Fuzzy Attack and two spoofing attacks related to RPM and Gear information. The sliding window approach in combination with entropy measures can detect attacks in a time-efficient way and with great accuracy for specific choices of the hyperparameters and entropy measures.

5.
Entropy (Basel) ; 22(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33287003

RESUMO

Research findings have shown that microphones can be uniquely identified by audio recordings since physical features of the microphone components leave repeatable and distinguishable traces on the audio stream. This property can be exploited in security applications to perform the identification of a mobile phone through the built-in microphone. The problem is to determine an accurate but also efficient representation of the physical characteristics, which is not known a priori. Usually there is a trade-off between the identification accuracy and the time requested to perform the classification. Various approaches have been used in literature to deal with it, ranging from the application of handcrafted statistical features to the recent application of deep learning techniques. This paper evaluates the application of different entropy measures (Shannon Entropy, Permutation Entropy, Dispersion Entropy, Approximate Entropy, Sample Entropy, and Fuzzy Entropy) and their suitability for microphone classification. The analysis is validated against an experimental dataset of built-in microphones of 34 mobile phones, stimulated by three different audio signals. The findings show that selected entropy measures can provide a very high identification accuracy in comparison to other statistical features and that they can be robust against the presence of noise. This paper performs an extensive analysis based on filter features selection methods to identify the most discriminating entropy measures and the related hyper-parameters (e.g., embedding dimension). Results on the trade-off between accuracy and classification time are also presented.

6.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182786

RESUMO

The detection and identification of road anomalies and obstacles in the road infrastructure has been investigated by the research community using different types of sensors. This paper evaluates the detection and identification of road anomalies/obstacles using the data collected from the Inertial Measurement Unit (IMU) installed in a vehicle and in particular from the data generated by the accelerometers' and gyroscopes' components. Inspired by the successes of the application of deep learning to various identification problems, this paper investigates the application of Convolutional Neural Network (CNN) to this specific problem. In particular, we propose a novel approach in this context where the time-frequency representation (i.e., spectrogram) is used as an input to the CNN rather than the original time domain data. This approach is evaluated on an experimental dataset collected using 12 different vehicles driving for more than 40 km of road. The results show that the proposed approach outperforms significantly and across different sampling rates both the application of CNN to the original time domain representation and the application of shallow machine learning algorithms. The approach achieves an identification accuracy of 97.2%. The results presented in this paper are based on an extensive optimization both of the CNN algorithm and the spectrogram implementation in terms of window size, type of window, and overlapping ratio. The accurate detection of road anomalies/obstacles could be useful to road infrastructure managers to monitor the quality of the road surface and to improve the accurate positioning of autonomous vehicles because road anomalies/obstacles could be used as landmarks.

7.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751739

RESUMO

A 2.3Tbps DDoS attack was recently mitigated by Amazon, which is a new record after the 2018 GitHub attack, or the famous 2016 Dyn DNS attack launched from hundreds of thousands of hijacked Internet of Things (IoT) devices. These attacks may disrupt the lives of billions of people worldwide, as we increasingly rely on the Internet. In this paper, we tackle the problem that hijacked IoT devices are often the origin of these attacks. With the goal of protecting the Internet and local networks, we propose Autopolicy: a system that automatically limits the IP traffic bandwidth-and other network resources-available to IoT devices in a particular network. We make use of the fact that devices, such as sensors, cameras, and smart home appliances, rarely need their high-speed network interfaces for normal operation. We present a simple yet flexible architecture for Autopolicy, specifying its functional blocks, message sequences, and general operation in a Software Defined Network. We present the experimental validation results, and release a prototype open source implementation.

8.
Sensors (Basel) ; 19(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801261

RESUMO

The concept of Continuous Authentication is to authenticate an entity on the basis of a digital output generated in a continuous way by the entity itself. This concept has recently been applied in the literature for the continuous authentication of persons on the basis of intrinsic features extracted from the analysis of the digital output generated by wearable sensors worn by the subjects during their daily routine. This paper investigates the application of this concept to the continuous authentication of automotive vehicles, which is a novel concept in the literature and which could be used where conventional solutions based on cryptographic means could not be used. In this case, the Continuous Authentication concept is implemented using the digital output from Inertial Measurement Units (IMUs) mounted on the vehicle, while it is driving on a specific road path. Different analytical approaches based on the extraction of statistical features from the time domain representation or the use of frequency domain coefficients are compared and the results are presented for various conditions and road segments. The results show that it is possible to authenticate vehicles from the Inertial Measurement Unit (IMU) recordings with great accuracy for different road segments.

9.
Sensors (Basel) ; 18(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772701

RESUMO

In the transportation sector, safety risks can be significantly reduced by monitoring the behaviour of drivers and by discouraging possible misconducts that entail fatigue and can increase the possibility of accidents. The Smart Tachograph (ST), the new revision of the Digital Tachograph (DT), has been designed with this purpose: to verify that speed limits and compulsory rest periods are respected by drivers. In order to operate properly, the ST periodically checks the consistency of data from different sensors, which can be potentially manipulated to avoid the monitoring of the driver behaviour. In this respect, the ST regulation specifies a test procedure to detect motion conflicts originating from inconsistencies between Global Navigation Satellite System (GNSS) and odometry data. This paper provides an experimental evaluation of the speed verification procedure specified by the ST regulation. Several hours of data were collected using three vehicles and considering light urban and highway environments. The vehicles were equipped with an On-Board Diagnostics (OBD) data reader and a GPS/Galileo receiver. The tests prescribed by the regulation were implemented with specific focus on synchronization aspects. The experimental analysis also considered aspects such as the impact of tunnels and the presence of data gaps. The analysis shows that the metrics selected for the tests are resilient to data gaps, latencies between GNSS and odometry data and simplistic manipulations such as data scaling. The new ST forces an attacker to falsify data from both sensors at the same time and in a coherent way. This makes more difficult the implementation of frauds in comparison to the current version of the DT.

10.
Sci Eng Ethics ; 24(3): 905-925, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-26797878

RESUMO

Even though public awareness about privacy risks in the Internet is increasing, in the evolution of the Internet to the Internet of Things (IoT) these risks are likely to become more relevant due to the large amount of data collected and processed by the "Things". The business drivers for exploring ways to monetize such data are one of the challenges identified in this paper for the protection of Privacy in the IoT. Beyond the protection of privacy, this paper highlights the need for new approaches, which grant a more active role to the users of the IoT and which address other potential issues such as the Digital Divide or safety risks. A key facet in ethical design is the transparency of the technology and services in how that technology handles data, as well as providing choice for the user. This paper presents a new approach for users' interaction with the IoT, which is based on the concept of Ethical Design implemented through a policy-based framework. In the proposed framework, users are provided with wider controls over personal data or the IoT services by selecting specific sets of policies, which can be tailored according to users' capabilities and to the contexts where they operate. The potential deployment of the framework in a typical IoT context is described with the identification of the main stakeholders and the processes that should be put in place.


Assuntos
Participação da Comunidade , Segurança Computacional , Coleta de Dados/ética , Tecnologia da Informação/ética , Consentimento Livre e Esclarecido , Internet , Privacidade , Coleta de Dados/métodos , Atenção à Saúde , Revelação , Engenharia/ética , Ética nos Negócios , Humanos , Princípios Morais , Autonomia Pessoal , Políticas , Poder Psicológico , Participação dos Interessados , Tecnologia
11.
Sensors (Basel) ; 17(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914760

RESUMO

Falsifying Global Navigation Satellite System (GNSS) data with a simulator or with a fake receiver can have a significant economic or safety impact in many transportation applications where Position, Velocity and Time (PVT) are used to enforce a regulation. In this context, the authentication of the source of the PVT data (i.e., the GNSS receiver) is a requirement since data faking can become a serious threat. Receiver fingerprinting techniques represent possible countermeasures to verify the authenticity of a GNSS receiver and of its data. Herein, the potential of clock-derived metrics for GNSS receiver fingerprinting is investigated, and a filter approach is implemented for feature selection. Novel experimental results show that three intrinsic features are sufficient to identify a receiver. Moreover, the adopted technique is time effective as data blocks of about 40 min are sufficient to produce stable features for fingerprinting.

12.
Sensors (Basel) ; 17(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383482

RESUMO

We investigate the identification of mobile phones through their built-in magnetometers. These electronic components have started to be widely deployed in mass market phones in recent years, and they can be exploited to uniquely identify mobile phones due their physical differences, which appear in the digital output generated by them. This is similar to approaches reported in the literature for other components of the mobile phone, including the digital camera, the microphones or their RF transmission components. In this paper, the identification is performed through an inexpensive device made up of a platform that rotates the mobile phone under test and a fixed magnet positioned on the edge of the rotating platform. When the mobile phone passes in front of the fixed magnet, the built-in magnetometer is stimulated, and its digital output is recorded and analyzed. For each mobile phone, the experiment is repeated over six different days to ensure consistency in the results. A total of 10 phones of different brands and models or of the same model were used in our experiment. The digital output from the magnetometers is synchronized and correlated, and statistical features are extracted to generate a fingerprint of the built-in magnetometer and, consequently, of the mobile phone. A SVM machine learning algorithm is used to classify the mobile phones on the basis of the extracted statistical features. Our results show that inter-model classification (i.e., different models and brands classification) is possible with great accuracy, but intra-model (i.e., phones with different serial numbers and same model) classification is more challenging, the resulting accuracy being just slightly above random choice.

13.
Sensors (Basel) ; 16(6)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271630

RESUMO

The correct identification of smartphones has various applications in the field of security or the fight against counterfeiting. As the level of sophistication in counterfeit electronics increases, detection procedures must become more accurate but also not destructive for the smartphone under testing. Some components of the smartphone are more likely to reveal their authenticity even without a physical inspection, since they are characterized by hardware fingerprints detectable by simply examining the data they provide. This is the case of MEMS (Micro Electro-Mechanical Systems) components like accelerometers and gyroscopes, where tiny differences and imprecisions in the manufacturing process determine unique patterns in the data output. In this paper, we present the experimental evaluation of the identification of smartphones through their built-in MEMS components. In our study, three different phones of the same model are subject to repeatable movements (composing a repeatable scenario) using an high precision robotic arm. The measurements from MEMS for each repeatable scenario are collected and analyzed. The identification algorithm is based on the extraction of the statistical features of the collected data for each scenario. The features are used in a support vector machine (SVM) classifier to identify the smartphone. The results of the evaluation are presented for different combinations of features and Inertial Measurement Unit (IMU) outputs, which show that detection accuracy of higher than 90% is achievable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA