Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 15(1): 1340, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351109

RESUMO

The endoplasmic reticulum associated degradation (ERAD) pathway regulates protein quality control at the endoplasmic reticulum. ERAD of lumenal and membrane proteins requires a conserved E3 ubiquitin ligase, called Hrd1. We do not understand the molecular configurations of Hrd1 that enable autoubiquitination and the subsequent retrotranslocation of misfolded protein substrates from the ER to the cytosol. Here, we have established a generalizable, single-molecule platform that enables high-efficiency labeling, stoichiometry determination, and functional assays for any integral membrane protein. Using this approach, we directly count Hrd1 proteins reconstituted into individual proteoliposomes. We report that Hrd1 assembles in different oligomeric configurations with mostly monomers and dimers detected at limiting dilution. By correlating oligomeric states with ubiquitination in vitro, we conclude that Hrd1 monomers are inefficient in autoubiquitination while dimers efficiently assemble polyubiquitin chains. Therefore, our results reveal the minimal composition of a Hrd1 oligomer that is capable of autoubiquitination. Our methods are broadly applicable to studying other complex membrane protein functions using reconstituted bilayer systems.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Cell Rep ; 42(11): 113451, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37980570

RESUMO

Misfolded endoplasmic reticulum (ER) proteins are degraded through a process called ER-associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identify several regions required for different Hrd1 functions. Most surprisingly, we find two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we define roles for disordered regions between structural elements that are required for Hrd1 autoubiquitination and substrate interaction. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the ER membrane.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Ubiquitina/metabolismo
3.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066402

RESUMO

Misfolded endoplasmic reticulum proteins are degraded through a process called endoplasmic reticulum associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identified several regions required for different Hrd1 functions. Most surprisingly, we found two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we defined roles for disordered regions between structural elements that were required for Hrd1's ability to autoubiquitinate and interact with substrate. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the endoplasmic reticulum membrane.

4.
Sci Adv ; 9(2): eadd8579, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638172

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) are removed through a process known as ER-associated degradation (ERAD). ERAD occurs through an integral membrane protein quality control system that recognizes substrates, retrotranslocates the substrates across the membrane, and ubiquitinates and extracts the substrates from the membrane for degradation at the cytosolic proteasome. While ERAD systems are known to regulate lipid biosynthetic enzymes, the regulation of ERAD systems by the lipid composition of cellular membranes remains unexplored. Here, we report that the ER membrane composition influences ERAD function by incapacitating substrate extraction. Unbiased lipidomic profiling revealed that elevation of specific very-long-chain ceramides leads to a marked increase in the level of ubiquitinated substrates in the ER membrane and concomitantly reduces extracted substrates in the cytoplasm. This work reveals a previously unrecognized mechanism in which ER membrane lipid remodeling changes the activity of ERAD.

5.
Elife ; 82019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713515

RESUMO

Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1's deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
6.
Adv Mater ; 31(40): e1902409, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369176

RESUMO

Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Terapia de Alvo Molecular/métodos , Nanopartículas , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Corantes Fluorescentes/efeitos adversos , Corantes Fluorescentes/farmacocinética , Humanos , Neoplasias/patologia , Segurança
7.
Cell ; 166(2): 394-407, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27321670

RESUMO

Misfolded proteins of the ER are retrotranslocated to the cytosol, where they are polyubiquitinated, extracted from the membrane, and degraded by the proteasome. To investigate how the ER-associated Degradation (ERAD) machinery can accomplish retrotranslocation of a misfolded luminal protein domain across a lipid bilayer, we have reconstituted retrotranslocation with purified S. cerevisiae proteins, using proteoliposomes containing the multi-spanning ubiquitin ligase Hrd1. Retrotranslocation of the luminal domain of a membrane-spanning substrate is triggered by autoubiquitination of Hrd1. Substrate ubiquitination is a subsequent event, and the Cdc48 ATPase that completes substrate extraction from the membrane is not required for retrotranslocation. Ubiquitination of lysines in Hrd1's RING-finger domain is required for substrate retrotranslocation in vitro and for ERAD in vivo. Our results suggest that Hrd1 forms a ubiquitin-gated protein-conducting channel.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , Saccharomyces cerevisiae/citologia , Ubiquitinação , Proteína com Valosina
8.
Traffic ; 16(1): 35-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25284293

RESUMO

It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non-vesicular routes, with members of the oxysterol-binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4-ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS-specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.


Assuntos
Adenosina Trifosfatases/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilserinas/metabolismo , Animais , Humanos , Fosfolipídeos/metabolismo
9.
J Cell Biol ; 202(6): 875-86, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24019533

RESUMO

Vesicle-mediated protein transport between organelles of the secretory and endocytic pathways is strongly influenced by the composition and organization of membrane lipids. In budding yeast, protein transport between the trans-Golgi network (TGN) and early endosome (EE) requires Drs2, a phospholipid translocase in the type IV P-type ATPase family. However, downstream effectors of Drs2 and specific phospholipid substrate requirements for protein transport in this pathway are unknown. Here, we show that the Arf GTPase-activating protein (ArfGAP) Gcs1 is a Drs2 effector that requires a variant of the ArfGAP lipid packing sensor (+ALPS) motif for localization to TGN/EE membranes. Drs2 increases membrane curvature and anionic phospholipid composition of the cytosolic leaflet, both of which are sensed by the +ALPS motif. Using mutant forms of Drs2 and the related protein Dnf1, which alter their ability to recognize phosphatidylserine, we show that translocation of this substrate to the cytosolic leaflet is essential for +ALPS binding and vesicular transport between the EE and the TGN.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidilserinas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Western Blotting , Endossomos/metabolismo , Imunoprecipitação , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilserinas/metabolismo , Homologia de Sequência de Aminoácidos , Rede trans-Golgi/metabolismo
10.
J Biol Chem ; 288(27): 19516-27, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23709217

RESUMO

Type IV P-type ATPases (P4-ATPases) use the energy from ATP to "flip" phospholipid across a lipid bilayer, facilitating membrane trafficking events and maintaining the characteristic plasma membrane phospholipid asymmetry. Preferred translocation substrates for the budding yeast P4-ATPases Dnf1 and Dnf2 include lysophosphatidylcholine, lysophosphatidylethanolamine, derivatives of phosphatidylcholine and phosphatidylethanolamine containing a 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) group on the sn-2 C6 position, and were presumed to include phosphatidylcholine and phosphatidylethanolamine species with two intact acyl chains. We previously identified several mutations in Dnf1 transmembrane (TM) segments 1 through 4 that greatly enhance recognition and transport of NBD phosphatidylserine (NBD-PS). Here we show that most of these Dnf1 mutants cannot flip diacylated PS to the cytosolic leaflet to establish PS asymmetry. However, mutation of a highly conserved asparagine (Asn-550) in TM3 allowed Dnf1 to restore plasma membrane PS asymmetry in a strain deficient for the P4-ATPase Drs2, the primary PS flippase. Moreover, Dnf1 N550 mutants could replace the Drs2 requirement for growth at low temperature. A screen for additional Dnf1 mutants capable of replacing Drs2 function identified substitutions of TM1 and 2 residues, within a region called the exit gate, that permit recognition of dually acylated PS. These TM1, 2, and 3 residues coordinate with the "proline + 4" residue within TM4 to determine substrate preference at the exit gate. Moreover, residues from Atp8a1, a mammalian ortholog of Drs2, in these positions allow PS recognition by Dnf1. These studies indicate that Dnf1 poorly recognizes diacylated phospholipid and define key substitutions enabling recognition of endogenous PS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Membrana Celular/enzimologia , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/genética , Mutação de Sentido Incorreto , Fosfatidilserinas/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Proc Natl Acad Sci U S A ; 110(5): E358-67, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23302692

RESUMO

Most P-type ATPases pump specific cations or heavy metals across a membrane to form ion gradients. However, the type IV P-type ATPases evolved the ability to transport specific phospholipid substrates rather than cations and function to establish plasma membrane asymmetry in eukaryotic cells. The mechanism for how a P-type ATPase, or any other transporter, can recognize and flip a phospholipid substrate is unclear. Here, through a combination of genetic screening and directed mutagenesis with the type IV P-type ATPases Dnf1 and Drs2 from budding yeast, we identify more than a dozen residues that determine headgroup specificity for phospholipid transport. These residues cluster at two interfacial regions flanking transmembrane segments 1-4 and lie outside of the canonical substrate binding site operating in cation pumps. Our data imply the presence of two substrate-selecting gates acting sequentially on opposite sides of the membrane: an entry gate, where phospholipid is initially selected from the extracellular leaflet, and an exit gate at the cytosolic leaflet. The entry and exit gates act cooperatively but imperfectly, with neither being able to restrict phosphatidylserine selection completely when the opposing gate is tuned to permit it. This work describes a unique transport mechanism for a P-type ATPase and provides insight into how integral membrane proteins can recognize and transport phospholipid substrate across a lipid bilayer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Sítios de Ligação/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Western Blotting , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Bicamadas Lipídicas/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Éteres Fosfolipídicos/farmacologia , Fosfolipídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 109(6): E290-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308393

RESUMO

Type IV P-type ATPases (P4-ATPases) catalyze translocation of phospholipid across a membrane to establish an asymmetric bilayer structure with phosphatidylserine (PS) and phosphatidylethanolamine (PE) restricted to the cytosolic leaflet. The mechanism for how P4-ATPases recognize and flip phospholipid is unknown, and is described as the "giant substrate problem" because the canonical substrate binding pockets of homologous cation pumps are too small to accommodate a bulky phospholipid. Here, we identify residues that confer differences in substrate specificity between Drs2 and Dnf1, Saccharomyces cerevisiae P4-ATPases that preferentially flip PS and phosphatidylcholine (PC), respectively. Transplanting transmembrane segments 3 and 4 (TM3-4) of Drs2 into Dnf1 alters the substrate preference of Dnf1 from PC to PS. Acquisition of the PS substrate maps to a Tyr618Phe substitution in TM4 of Dnf1, representing the loss of a single hydroxyl group. The reciprocal Phe511Tyr substitution in Drs2 specifically abrogates PS recognition by this flippase causing PS exposure on the outer leaflet of the plasma membrane without disrupting PE asymmetry. TM3 and the adjoining lumenal loop contribute residues important for Dnf1 PC preference, including Phe587. Modeling of residues involved in substrate selection suggests a novel P-type ATPase transport pathway at the protein/lipid interface and a potential solution to the giant substrate problem.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , ATPases Transportadoras de Cálcio/química , Membrana Celular/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Biochim Biophys Acta ; 1821(8): 1068-77, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22234261

RESUMO

Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. This article is part of a Special Issue entitled Lipids and Vesicular Transport.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Expressão Gênica , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Filogenia , Plantas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA