Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 7: 1337356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390346

RESUMO

Crying is an inevitable character trait that occurs throughout the growth of infants, under conditions where the caregiver may have difficulty interpreting the underlying cause of the cry. Crying can be treated as an audio signal that carries a message about the infant's state, such as discomfort, hunger, and sickness. The primary infant caregiver requires traditional ways of understanding these feelings. Failing to understand them correctly can cause severe problems. Several methods attempt to solve this problem; however, proper audio feature representation and classifiers are necessary for better results. This study uses time-, frequency-, and time-frequency-domain feature representations to gain in-depth information from the data. The time-domain features include zero-crossing rate (ZCR) and root mean square (RMS), the frequency-domain feature includes the Mel-spectrogram, and the time-frequency-domain feature includes Mel-frequency cepstral coefficients (MFCCs). Moreover, time-series imaging algorithms are applied to transform 20 MFCC features into images using different algorithms: Gramian angular difference fields, Gramian angular summation fields, Markov transition fields, recurrence plots, and RGB GAF. Then, these features are provided to different machine learning classifiers, such as decision tree, random forest, K nearest neighbors, and bagging. The use of MFCCs, ZCR, and RMS as features achieved high performance, outperforming state of the art (SOTA). Optimal parameters are found via the grid search method using 10-fold cross-validation. Our MFCC-based random forest (RF) classifier approach achieved an accuracy of 96.39%, outperforming SOTA, the scalogram-based shuffleNet classifier, which had an accuracy of 95.17%.

2.
Front Mol Neurosci ; 16: 1230436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795273

RESUMO

Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.

3.
Discov Nano ; 18(1): 1, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719545

RESUMO

We propose and demonstrate a novel range of models to accurately determine the optical properties of nitrogen-free carbon quantum dots (CQDs) with ordered graphene layered structures. We confirm the results of our models against the full range of experimental results for CQDs available from an extensive review of the literature. The models can be equally applied to CQDs with varied sizes and with different oxygen contents in the basal planes of the constituent graphenic sheets. We demonstrate that the experimentally observed blue fluorescent emission of nitrogen-free CQDs can be associated with either small oxidised areas on the periphery of the graphenic sheets, or with sub-nanometre non-functionalised islands of sp2-hybridised carbon with high symmetry confined in the centres of oxidised graphene sheets. Larger and/or less symmetric non-functionalised regions in the centre of functionalised graphene sheet are found to be sources of green and even red fluorescent emission from nitrogen-free CQDs. We also demonstrate an approach to simplify the modelling of the discussed sp2-islands by substitution with equivalent strained polycyclic aromatic hydrocarbons. Additionally, we show that the bandgaps (and photoluminescence) of CQDs are not dependent on either out-of-plane corrugation of the graphene sheet or the spacing between sp2-islands. Advantageously, our proposed models show that there is no need to involve light-emitting polycyclic aromatic molecules (nanographenes) with arbitrary structures grafted to the particle periphery to explain the plethora of optical phenomena observed for CQDs across the full range of experimental works.

4.
Nanoscale Res Lett ; 15(1): 209, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33169178

RESUMO

We demonstrate a high-pressure, high-temperature sintering technique to form nitrogen-vacancy-nitrogen centres in nanodiamonds. Polycrystalline diamond nanoparticle precursors, with mean size of 25 nm, are produced by the shock wave from an explosion. These nanoparticles are sintered in the presence of ethanol, at a pressure of 7 GPa and temperature of 1300 °C, to produce substantially larger (3-4 times) diamond crystallites. The recorded spectral properties demonstrate the improved crystalline quality. The types of defects present are also observed to change; the characteristic spectral features of nitrogen-vacancy and silicon-vacancy centres present for the precursor material disappear. Two new characteristic features appear: (1) paramagnetic substitutional nitrogen (P1 centres with spin ½) with an electron paramagnetic resonance characteristic triplet hyperfine structure due to the I = 1 magnetic moment of the nitrogen nuclear spin and (2) the green spectral photoluminescence signature of the nitrogen-vacancy-nitrogen centres. This production method is a strong alternative to conventional high-energy particle beam irradiation. It can be used to easily produce purely green fluorescing nanodiamonds with advantageous properties for optical biolabelling applications.

5.
Sci Rep ; 10(1): 14350, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873832

RESUMO

We demonstrate a method for the spatial tracking of individual particles, dispersed in a fluid host, via Raman spectroscopy. The effect of moving a particle upon the intensity of different bands within its Raman spectrum is first established computationally through a scattering matrix method. By comparing an experimental spectrum to the computational analysis, we show that the position of the particle can be obtained. We apply this method to the specific cases of molybdenum disulfide and graphene oxide particles, dispersed in a nematic liquid crystal, and contained within a microfluidic channel. By considering the ratio and difference between the intensities of the two Raman bands of molybdenum disulfide and graphene oxide, we demonstrate that an accurate position can be obtained in two dimensions.

6.
Opt Express ; 28(11): 16394-16406, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549463

RESUMO

We propose a reconfigurable and non-volatile Bragg grating in the telecommunication C-band based on the combination of novel low-loss phase-change materials (specifically Ge2Sb2Se4Te1 and Sb2S3) with a silicon nitride platform. The Bragg grating is formed by arrayed cells of phase-change material, whose crystallisation fraction modifies the Bragg wavelength and extinction ratio. These devices could be used in integrated photonic circuits for optical communications applications in smart filters and Bragg mirrors and could also find use in tuneable ring resonators, Mach-Zehnder interferometers or frequency selectors for future laser on chip applications. In the case of Ge2Sb2Se4Te1, crystallisation produces a Bragg resonance shift up to ∼ 15 nm, accompanied with a large amplitude modulation (insertion loss of 22 dB). Using Sb2S3, low losses are presented in both states of the phase change material, obtaining a ∼ 7 nm red-shift in the Bragg wavelength. The gratings are evaluated for two period numbers, 100 and 200 periods. The number of periods determines the bandwidth and extinction ratio of the filters. Increasing the number of periods increases the extinction ratio and reflected power, also narrowing the bandwidth. This results in a trade-off between device size and performance. Finally, we combine both phase-change materials in a single Bragg grating to provide both frequency and amplitude modulation. A defect is introduced in the Sb2S3 Bragg grating, producing a high quality factor resonance (Q ∼ 104) which can be shifted by 7 nm via crystallisation. A GSST cell is then placed in the defect which can modulate the transmission amplitude from low loss to below -16 dB.

7.
Opt Express ; 27(24): 35129-35140, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878688

RESUMO

We demonstrate the potential of a graphene capacitor structure on silicon-rich nitride micro-ring resonators for multitasking operations within high performance computing. Capacitor structures formed by two graphene sheets separated by a 10 nm insulating silicon nitride layer are considered. Hybrid integrated photonic structures are then designed to exploit the electro-absorptive operation of the graphene capacitor to tuneably control the transmission and attenuation of different wavelengths of light. By tuning the capacitor length, a shift in the resonant wavelength is produced giving rise to a broadband multilevel photonic volatile memory. The advantages of using silicon-rich nitride as the waveguiding material in place of the more conventional silicon nitride (Si3N4) are shown, with a doubling of the device's operational bandwidth from 31.2 to 62.41 GHz achieved while also allowing a smaller device footprint. A systematic evaluation of the device's performance and energy consumption is presented. A difference in the extinction ratio between the ON and OFF states of 16.5 dB and energy consumptions of <0.3 pJ/bit are obtained. Finally, it has been demonstrated that increasing the permittivity of the insulator layer in the capacitor structure, the energy consumption per bit can be reduced even further. Overall, the resonance tuning enabled by the novel graphene capacitor makes it a key component for future multilevel photonic memories and optical routing in high performance computing.

8.
Sci Rep ; 9(1): 17435, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758165

RESUMO

Metal-carbon nanocomposites possess attractive physical-chemical properties compared to their macroscopic counterparts. They are important and unique nanosystems with applications including in the future development of nanomaterial enabled sensors, polymer fillers for electromagnetic radiation shields, and catalysts for various chemical reactions. However, synthesis of these nanocomposites typically employs toxic solvents and hazardous precursors, leading to environmental and health concerns. Together with the complexity of the synthetic processes involved, it is clear that a new synthesis route is required. Herein, Cu/C, Ni/C and Co/C nanocomposites were synthesized using a two-step method including mechanochemical treatment of polyethylene glycol and acetates of copper, nickel and cobalt, followed by pyrolysis of the mixtures in an argon flow at 700 °C. Morphological and structural analysis of the synthesized nanocomposites show their core-shell nature with average crystallite sizes of 50 (Cu/C), 18 (Co/C) and 20 nm (Ni/C) respectively. The carbon shell originates from disordered sp2 carbon (5.2-17.2 wt.%) with a low graphitization degree. The stability and prolonged resistance of composites to oxidation in air arise from the complete embedding of the metal core into the carbon shell together with the presence of surface oxide layer of metal nanoparticles. This approach demonstrates an environmentally friendly method of mechanochemistry for controllable synthesis of metal-carbon nanocomposites.

9.
Opt Express ; 27(17): 24724-24737, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510357

RESUMO

Integrated phase-change photonic memory devices offer a novel route to non-volatile storage and computing that can be carried out entirely in the optical domain, obviating the necessity for time and energy consuming opto-electrical conversions. Such memory devices generally consist of integrated waveguide structures onto which are fabricated small phase-change memory cells. Switching these cells between their amorphous and crystalline states modifies significantly the optical transmission through the waveguide, so providing memory, and computing, functionality. To carry out such switching, optical pulses are sent down the waveguide, coupling to the phase-change cell, heating it up, and so switching it between states. While great strides have been made in the development of integrated phase-change photonic devices in recent years, there is always a pressing need for faster switching times, lower energy consumption and a smaller device footprint. In this work, therefore, we propose the use of plasmonic enhancement of the light-matter interaction between the propagating waveguide mode and the phase-change cell as a means to faster, smaller and more energy-efficient devices. In particular, we propose a form of plasmonic dimer nanoantenna of significantly sub-micron size that, in simulations, offers significant improvements in switching speeds and energies. Write/erase speeds in the range 2 to 20 ns and write/erase energies in the range 2 to 15 pJ were predicted, representing improvements of one to two orders of magnitude when compared to conventional device architectures.

10.
Nanoscale ; 11(36): 16886-16895, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31483415

RESUMO

The first observation of liquid crystalline dispersions of liquid phase-exfoliated tungsten disulfide flakes is reported in a range of organic solvents. The liquid crystals demonstrate significant birefringence as observed in the linear and circular dichroism measurements respectively. In particular, linear dichroism is observed throughout the visible range while broad-band circular dichroism can be observed in the range from 500-800 nm. Under an applied magnetic field of ±1.5 T the circular dichroism can be switched ON/OFF, while the wavelength range for switching can be tuned from large to narrow range by the proper selection of the host solvent. In combination with photoluminescence capabilities of WS2, this opens a pathway to a wide variety of applications, such as deposition of highly uniform films over large areas for photovoltaic and terahertz devices.

11.
Nanoscale Res Lett ; 14(1): 279, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420765

RESUMO

The content of nitrogen-vacancy (NV-) colour centres in the nanodiamonds (DNDs) produced during the detonation of nitrogen-containing explosives was found to be 1.1 ± 0.3 ppm. This value is impressive for nanodiamonds of size < 10 nm with intentionally created NV- centres. The concentration was estimated from the electron paramagnetic resonance as determined from the integrated intensity of the g = 4.27 line. This line is related with "forbidden" ∆ms = 2 transitions between the Zeeman levels of a NV- centre's ground triplet state. Confocal fluorescence microscopy enables detection of the red photoluminescence (PL) of the NV- colour centres in nanoscale DND aggregates formed from the 5-nm nanoparticles. Subwavelength emitters consisting of NV- with sizes a few times smaller than the diffraction-limited spot are clearly distinguished. We have further observed an abrupt drop in the PL intensity when mixing and anti-crossing of the ground and excited states spin levels in NV- occurs under an applied external magnetic field. This effect is a unique quantum feature of NV- centres, which cannot be observed for other visible domain light-emitting colour centres in a diamond lattice.

12.
Nanoscale Res Lett ; 14(1): 225, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289955

RESUMO

Time-resolved terahertz spectroscopy has become a common method both for fundamental and applied studies focused on improving the quality of human life. However, the issue of finding materials applicable in these systems is still relevant. One of the appropriate solution is 2D materials. Here, we demonstrate the transmission properties of unique graphene-based structures with iron trichloride FeCl3 dopant on glass, sapphire and Kapton polyimide film substrates that previously were not investigated in the framework of the above-described problems in near infrared and THz ranges. We also show properties of a thin tungsten disulfide WS2 film fabricated from liquid crystal solutions transferred to a polyimide and polyethylene terephthalate substrates. The introduction of impurities, the selection of structural dimensions and the use of an appropriate substrate for modified 2D layered materials allow to control the transmission of samples for both the terahertz and infrared ranges, which can be used for creation of effective modulators and components for THz spectroscopy systems.

13.
ACS Omega ; 3(2): 1546-1554, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503971

RESUMO

The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.

14.
Opt Express ; 25(12): 13705-13713, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788913

RESUMO

We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 ± 0.3 kHz for the DPS-DFB laser, as compared to ΔνQPS = 30.4 ± 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (R-SHDI).

15.
Sci Rep ; 7: 42120, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186118

RESUMO

In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

16.
Nanoscale Res Lett ; 7(1): 387, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22788755

RESUMO

In this study, a technique for the optimization of the optical characteristics of multi-channel filters after fabrication is proposed. The multi-channel filter under consideration is based on a Si photonic crystal (PhC), tunable liquid crystal and opto-fluidic technologies. By filling air grooves in the one-dimensional, Si-Air PhC with a nematic liquid crystal, an efficiently coupled multi-channel filter can be realised in which a wide stop band is used for channel separation over a wide frequency range. By selectively tuning the refractive index in various coupled cavities, continuous individual tuning of the central channel (or edge channels) up to 25% of the total channel spacing is demonstrated. To our knowledge, this is the first report on the electro-optical solution for the compensation of fabrication tolerances in an integrated platform.

17.
Opt Lett ; 36(10): 1854-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593913

RESUMO

We report on what is believed to be the first example of an ultrawide, bandpass filter, based on a high-contrast multicomponent one-dimensional Si photonic crystal (PC). The effect of the disappearance of a limited number of flat stopbands and their replacement with extended passbands is demonstrated over a wide IR range. The passbands obtained exhibit a high transmission of 92% to 96% and a substantial bandwidth of 1800 nm, which is spectrally flat within the passband. The multicomponent PC model suggested can be applied to the design of any micro- or nanostructured semiconductor or dielectric material for application across a wide spectral range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA