Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 99-108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340518

RESUMO

HYPOTHESIS: There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies. EXPERIMENTS: For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the molecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS). FINDINGS: NMR and SANS investigations strengthen each other and allow a clear picture of the change of copolymer solubility and related copolymer self-assembly as a function of temperature. At the molecular scale, dehydrating NIPAM units drag N,N-dimethyl acrylamide (DMA) moieties with them in a gradual collapse of the copolymer chain; this induces a morphological transition of the self-assemblies from star-like nanostructures to crew-cut micelles. Interestingly, the transition spans a temperature range which depends on the monomer distribution profile in the copolymer chain, with the asymmetric triblock copolymer specimen revealing the broadest one. We show that the broad morphological transitions associated with gradient copolymers can be mimicked and even surpassed by the use of stepwise gradient (asymmetric) copolymers, which can be more easily and reproducibly synthesized than linear gradient copolymers.

2.
Colloids Surf B Biointerfaces ; 231: 113532, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722254

RESUMO

In recent years, lipid cubic nanoparticles have emerged as promising nanocarriers for drug delivery, due to the several advantages they exhibit with respect to other lipid systems. Here, we report on lipid cubic nanoparticles stabilized by PNIPAM-based amphiphilic block copolymers, specifically, poly(N, N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a new class of drug delivery systems (DDS). In vitro studies on the internalization efficiency of the DDS towards two types of human cancer cells (colon HCT-116 and bladder T24 cells), carried out employing a set of sensitive techniques (confocal laser scanning microscopy (CLSM), flow cytometry, scanning electron microscopy (SEM), fluorescence spectroscopy), highlight a prominent role of PDMA-b-PNIPAM stabilizer in enhancing the uptake of cubosomes, compared to the standard Pluronic F127-based formulations. The drug delivery potential of cubosomes, tested by encapsulating a chemotherapeutic drug, camptothecin (CPT), and conducting cytotoxicity studies against 2D plated cells and 3D spheroids, confirm that PDMA-b-PNIPAM-stabilized cubosomes improve the efficacy of treatment with CPT. The origin of this effect lies in the higher lipophilicity of the stabilizer, as we confirm by studying the interaction between the cubosomes and biomimetic membranes of lipid vesicles with Small Angle X-Ray Scattering (SAXS) and CLSM experiments. These results corroborate our fundamental understanding of the interaction between cubosomes and cells, and on the role of polymer to formulate lipid cubic nanoparticles as DDS.


Assuntos
Resinas Acrílicas , Nanopartículas , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Polímeros , Lipídeos/química
3.
Nanoscale ; 15(20): 8988-8995, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37144495

RESUMO

The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.


Assuntos
Lipopolissacarídeos , Lipossomos , Lipopolissacarídeos/química , Lipídeo A , Espalhamento a Baixo Ângulo , Difração de Raios X , Bactérias , Glicolipídeos
4.
Colloids Surf B Biointerfaces ; 220: 112884, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209550

RESUMO

The design of drug delivery systems (DDS) for the encapsulation of therapeutic agents and the controlled release to the target site of the disease is one of the main goals of nanomedicine. Although already explored in an extensive number of studies over the years, lipid assemblies, and particularly liposomes, are still considered the most promising and interesting candidates as DDS due to their biocompatibility and structural similarity with plasma membranes. Lately, this research area has been extended to include more complex lipid assemblies, such as cubosomes. Cubosomes are an emerging structural platform for the delivery of molecules with pharmaceutical interest, such as drugs, bioactives and contrast agents. Here we report on the application of a thermo-responsive copolymer poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a thermoresponsive stabilizer of lipid-based nanoparticles for drug-delivery. First, we assessed the affinity of PDMA-b-PNIPAM towards supported and free-standing bilayers; then, we explored the colloidal and thermoresponsive properties of cubic self-assembled DDS composed of glycerol-monooleate (GMO), where PDMA-b-PNIPAM replaces the conventional stabilizer Pluronic F127 (PEOx-PPOy-PEOx), normally used for cubosomes. We prepared dispersions of cubic lipid nanoparticles with two PDMA-b-PNIPAM block copolymers of different molar mass. The colloidal properties were then assessed and compared to those exhibited by standard lipid cubic dispersions stabilized by Pluronic F-127, combining a series of experimental techniques (Quartz Crystal Microbalance with Dissipation monitoring, Dynamic Light Scattering, Small-Angle X-rays Scattering, Cryo-Transmission Electron Microscopy). Interestingly, PDMA-b-PNIPAM stabilized cubosomes display additional benefits with respect to those stabilized by Pluronic, thanks to the combination of a "sponge " effect for the controlled release of encapsulated molecules and an increased affinity towards lipid bilayer membranes, which is a promising feature to maximize fusion with the target-cellular site.


Assuntos
Lipossomos , Nanopartículas , Preparações de Ação Retardada , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Poloxâmero/química , Excipientes
5.
Pharmaceutics ; 13(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208080

RESUMO

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.

6.
Langmuir ; 36(37): 10941-10951, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32852955

RESUMO

In the last few years, hybrid lipid-copolymer assemblies have attracted increasing attention as possible two-dimensional (2D) membrane platforms, combining the biorelevance of the lipid building blocks with the stability and chemical tunability of copolymers. The relevance of these systems varies from fundamental studies on biological membrane-related phenomena to the construction of 2D complex devices for material science and biosensor technology. Both the fundamental understanding and the application of hybrid lipid-copolymer-supported bilayers require thorough physicochemical comprehension and structural control. Herein, we report a comprehensive physicochemical and structural characterization of hybrid monolayers at the air/water interface and of solid-supported hybrid membranes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the block copolymer poly(butadiene-b-ethyleneoxide) (PBD-b-PEO). Hybrid lipid-copolymer supported bilayers (HSLBs) with variable copolymer contents were prepared through spontaneous rupture and fusion of hybrid vesicles onto a hydrophilic substrate. The properties of the thin films and the parent vesicles were probed through dynamic light scattering (DLS), differential scanning calorimetry (DSC), optical ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and confocal scanning laser microscopy (CSLM). Stable, hybrid lipid/copolymer systems were obtained for a copolymer content of 10-65 mol %. In particular, DSC and CSLM show lateral phase separation in these hybrid systems. These results improve our fundamental understanding of HSLBs, which is necessary for future applications of hybrid systems as biomimetic membranes or as drug delivery systems, with additional properties with respect to phospholipid liposomes.

7.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698376

RESUMO

Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV-vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.


Assuntos
Fosfatase Alcalina/química , Enzimas Imobilizadas/química , Lipídeos/química , Cristais Líquidos/química , Biocatálise , Álcoois Graxos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Nitrofenóis/química , Compostos Organofosforados/química , Especificidade por Substrato , Sacarose/análogos & derivados , Sacarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA