Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Acta Vet Hung ; 72(1): 1-10, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578711

RESUMO

The authors aimed to investigate eight strains of Escherichia coli (E. coli) strains from Hungarian layer flocks for antimicrobial resistance genes (ARG), using metagenomic methods. The strains were isolated from cloacal swabs of healthy adult layers. This study employed shotgun sequencing-based genetic and bioinformatic analysis along with determining phenotypic minimum inhibitory concentrations. A total of 59 ARGs were identified in the eight E. coli isolates, carrying ARGs against 15 groups of antibiotics. Among these, 28 ARGs were identified as transferable. Specifically, four ARGs were plasmid-derived, 18 ARGs were phage-derived and an additional six ARGs were predicted to be mobile, contributing to their mobility and potential spread between bacteria.


Assuntos
Escherichia coli , Genes Bacterianos , Animais , Escherichia coli/genética , Hungria/epidemiologia , Antibacterianos/farmacologia , Bactérias
2.
Antibiotics (Basel) ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534682

RESUMO

The global spread of antimicrobial resistance has become a prominent issue in both veterinary and public health in the 21st century. The extensive use of amoxicillin, a beta-lactam antibiotic, and consequent resistance development are particularly alarming in food-producing animals, with a focus on the swine and poultry sectors. Another beta-lactam, cefotaxime, is widely utilized in human medicine, where the escalating resistance to third- and fourth-generation cephalosporins is a major concern. The aim of this study was to simulate the development of phenotypic and genotypic resistance to beta-lactam antibiotics, focusing on amoxicillin and cefotaxime. The investigation of the minimal inhibitory concentrations (MIC) of antibiotics was performed at 1×, 10×, 100×, and 1000× concentrations using the modified microbial evolution and growth arena (MEGA-plate) method. Our results indicate that amoxicillin significantly increased the MIC values of several tested antibiotics, except for oxytetracycline and florfenicol. In the case of cefotaxime, this increase was observed in all classes. A total of 44 antimicrobial resistance genes were identified in all samples. Chromosomal point mutations, particularly concerning cefotaxime, revealed numerous complex mutations, deletions, insertions, and single nucleotide polymorphisms (SNPs) that were not experienced in the case of amoxicillin. The findings suggest that, regarding amoxicillin, the point mutation of the acrB gene could explain the observed MIC value increases due to the heightened activity of the acrAB-tolC efflux pump system. However, under the influence of cefotaxime, more intricate processes occurred, including complex amino acid substitutions in the ampC gene promoter region, increased enzyme production induced by amino acid substitutions and SNPs, as well as mutations in the acrR and robA repressor genes that heightened the activity of the acrAB-tolC efflux pump system. These changes may contribute to the significant MIC increases observed for all tested antibiotics. The results underscore the importance of understanding cross-resistance development between individual drugs when choosing clinical alternative drugs. The point mutations in the mdtB and emrR genes may also contribute to the increased activity of the mdtABC-tolC and emrAB-tolC pump systems against all tested antibiotics. The exceptionally high mutation rate induced by cephalosporins justifies further investigations to clarify the exact mechanism behind.

3.
Front Vet Sci ; 11: 1345877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435368

RESUMO

Stress-induced genomic changes in Candida albicans contribute to the adaptation of this species to various environmental conditions. Variations of the genome composition of animal-origin C. albicans strains are largely unexplored and drug resistance or other selective pressures driving the evolution of these yeasts remained an intriguing question. Comparative genome analysis was carried out to uncover chromosomal aneuploidies and regions with loss of heterozygosity (LOH), two mechanisms that manage genome plasticity. We detected aneuploidy only in human isolates. Bird-derived isolates showed LOH in genes commonly associated with antifungal drug resistance similar to human isolates. Our study suggests that environmental fungicide usage might exert selective pressure on C. albicans infecting animals, thus contributing to the spread of potentially resistant strains between different hosts.

4.
Animals (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254406

RESUMO

A panel of intestinal samples collected from common pheasants (Phasianus colchicus) between 2008 and 2017 was used for metagenomic investigation using an unbiased enrichment protocol and different bioinformatic pipelines. The number of sequence reads in the metagenomic analysis ranged from 1,419,265 to 17,507,704 with a viral sequence read rate ranging from 0.01% to 59%. When considering the sequence reads of eukaryotic viruses, RNA and DNA viruses were identified in the samples, including but not limited to coronaviruses, reoviruses, parvoviruses, and CRESS DNA viruses (i.e., circular Rep-encoding single-stranded DNA viruses). Partial or nearly complete genome sequences were reconstructed of at least three different parvoviruses (dependoparvovirus, aveparvovirus and chaphamaparvovirus), as well as gyroviruses and diverse CRESS DNA viruses. Generating information of virus diversity will serve as a basis for developing specific diagnostic tools and for structured epidemiological investigations, useful to assess the impact of these novel viruses on animal health.

5.
Vet Res Commun ; 48(1): 309-315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37688754

RESUMO

Polyomaviruses are widely distributed viruses of birds that may induce developmental deformities and internal organ disorders primarily in nestlings. In this study, polyomavirus sequence was detected in kidney and liver samples of a common kestrel (Falco tinnunculus) that succumbed at a rescue station in Hungary. The amplified 5025 nucleotide (nt) long genome contained the early (large and small T antigen, LTA and STA) and late (viral proteins, VP1, VP2, VP3) open reading frames (ORFs) typical for polyomaviruses. One of the additional putative ORFs (named VP4) showed identical localization with the VP4 and ORF-X of gammapolyomaviruses, but putative splicing sites could not be found in its sequence. Interestingly, the predicted 123 amino acid (aa) long protein sequence showed the highest similarity with human papillomavirus E4 early proteins in respect of the aa distribution and motif arrangement implying similar functions. The LTA of the kestrel polyomavirus shared <59.2% nt and aa pairwise identity with the LTA sequence of other polyomaviruses and formed a separated branch in the phylogenetic tree among gammapolyomaviruses. Accordingly, the kestrel polyomavirus may be the first member of a novel species within the Gammapolyomavirus genus, tentatively named Gammapolyomavirus faltin.


Assuntos
Polyomavirus , Humanos , Animais , Polyomavirus/genética , Papillomavirus Humano , Filogenia , Genoma Viral/genética , Genômica
6.
Antibiotics (Basel) ; 12(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136762

RESUMO

The issue of antimicrobial resistance is becoming an increasingly serious challenge in both human and veterinary medicine. Prudent antimicrobial use in veterinary medicine is warranted and supported by international guidelines, with the Antimicrobial Advice Ad Hoc Expert Group (AMEG) placing particular emphasis on the critically important group B antimicrobials. These antimicrobials are commonly employed, especially in the poultry and swine industry. The impact of florfenicol, a veterinary antibiotic, was studied on the resistance development of Escherichia coli. The aim of the study was to investigate the effect of the use of florfenicol on the development of phenotypic and genomic resistances, not only to the drug itself but also to other drugs. The minimum inhibitory concentrations (MICs) of the antibiotics were investigated at 1×, 10×, 100× and 1000× concentrations using the adapted Microbial Evolution and Growth Arena (MEGA-plate) method. The results demonstrate that florfenicol can select for resistance to fluoroquinolone antibiotics (167× MIC value increase) and cephalosporins (67× MIC value increase). A total of 44 antimicrobial resistance genes were identified, the majority of which were consistent across the samples. Chromosomal point mutations, including alterations in resistance-associated and regulatory genes (acrB, acrR, emrR and robA), are thought to trigger multiple drug efflux pump activations, leading to phenotypically increased resistance. The study underscores the impact of florfenicol and its role in the development of antimicrobial resistance, particularly concerning fluoroquinolone antibiotics and cephalosporins. This study is the first to report florfenicol's dose-dependent enhancement of other antibiotics' MICs, linked to mutations in SOS-box genes (mdtABC-tolC, emrAB-tolC and acrAB-tolC) and increased multidrug efflux pump genes. Mutations in the regulatory genes acrR, emrR and rpbA support the possibility of increased gene expression. The results are crucial for understanding antimicrobial resistance and its development, highlighting the promising potential of in vitro evolutionary and coselection studies for future research.

7.
Vet Microbiol ; 287: 109909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925876

RESUMO

Mycoplasma iowae is a worldwide spread and economically important avian pathogen that mostly infects turkeys. Currently, multi-locus sequence typing (MLST) serves as the gold standard method for strain identification in M. iowae. However, additional robust genotyping methods are required to effectively monitor M. iowae infections and conduct epidemiological investigations. The first aim of this study was to develop genotyping assays with high resolution, that specifically target M. iowae, namely a multiple-locus variable number of tandem-repeats analysis (MLVA) and a core genome multi-locus sequence typing (cgMLST) schema. The second aim was the determination of relationships among a diverse selection of M. iowae strains and clinical isolates with a previous and the newly developed assays. The MLVA was designed based on the analyses of tandem-repeat (TR) regions in the six serotype reference strains (I, J, K, N, Q and R). The cgMLST schema was developed based on the coding sequences (CDSs) common in 95% of the examined 99 isolates. The samples were submitted for a previously published MLST assay for comparison with the developed methods. Out of 94 TR regions identified, 17 alleles were selected for further evaluation by PCR. Finally, seven alleles were chosen to establish the MLVA assay. Additionally, whole genome sequence analyses identified a total of 676 CDSs shared by 95% of the isolates, all of which were included into the developed cgMLST schema. The MLVA discriminated 19 distinct genotypes (GT), while with the cgMLST assay 79 sequence types (ST) could be determined with Simpson's diversity indices of 0.810 (MLVA) and 0.989 (cgMLST). The applied assays consistently identified the same main clusters among the diverse selection of isolates, thereby demonstrating their suitability for various genetic analyses and their ability to yield congruent results.


Assuntos
Mycoplasma iowae , Animais , Tipagem de Sequências Multilocus/métodos , Tipagem de Sequências Multilocus/veterinária , Genótipo , Técnicas de Genotipagem/veterinária , Sequências de Repetição em Tandem , Repetições Minissatélites/genética , Filogenia
8.
Animals (Basel) ; 13(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37893946

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major concern worldwide. Control of PRRSV is a challenging task due to various factors, including the viral diversity and variability. In this study, we evaluated an amplicon library preparation protocol targeting the ORF7 region of both PRRSV species, Betaarterivirus suid 1 and Betaarterivirus suid 2. We designed tailed primers for a two-step PCR procedure that generates ORF7-specific amplicon libraries suitable for use on Illumina sequencers. We tested the method with serum samples containing common laboratory strains and with pooled serum samples (n = 15) collected from different pig farms during 2019-2021 in Hungary. Testing spiked serum samples showed that the newly designed method is highly sensitive and detects the viral RNA even at low copy numbers (corresponding to approx. Ct 35). The ORF7 sequences were easily assembled even from clinical samples. Two different sequence variants were identified in five samples, and the Porcilis MLV vaccine strain was identified as the minor variant in four samples. An in-depth analysis of the deep sequencing results revealed numerous polymorphic sites along the ORF7 gene in a total of eight samples, and some sites (positions 12, 165, 219, 225, 315, 345, and 351) were found to be common in several clinical specimens. We conclude that amplicon deep sequencing of a highly conserved region of the PRRSV genome could support both laboratory diagnosis and epidemiologic surveillance of the disease.

9.
J Glob Antimicrob Resist ; 35: 257-261, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832871

RESUMO

OBJECTIVES: Our aim was to characterize and compare contemporary carbapenem-resistant Enterobacterales (CRE) isolates from gulls, the River Danube, and humans in Hungary, Budapest. METHODS: Multiresistant Enterobacterales were sought for in 227 gull faecal and 24 Danube water samples from 2019 to 2020. Eosin-methylene blue agar containing 2 mg/L cefotaxime and Colilert-test containing 10 mg/L cefotaxime were used for gull and water samples, respectively. Isolates were characterized by polymerase chain reactions (PCRs); acquired carbapenemase producers were further analysed by whole-genome sequencing, together with 21 Hungarian human CR Escherichia coli (CREc) isolates. RESULTS: Gull and water samples exhibited a CRE prevalence of 7.4% (9/122) and 6.7% (7/105), none and 5/12 water samples yielded CRE from 2019 and 2020, respectively; CRE were found only in samples taken downstream of Budapest. The dominant species was Escherichia coli and the most prevalent carbapenemase was blaNDM-1. High-risk CREc clones were found both in gulls (ST224, ST372, ST744) and the Danube (ST10, ST354, ST410); the closest associations were between ST410 from humans and the Danube, among ST1437 among gulls, and between ST1437 in gulls and the Danube (46, 0, and 22-24 allelic distances, respectively). Direct links between human and gull isolates were not demonstrated. CONCLUSION: The study demonstrates potential epidemiological links among humans, a river crossing a city, and urbanised birds, suggesting a local transmission network. Water bodies receiving influent wastewater, together with animals using such habitats, may serve as a local reservoir system for CRE, highlighting the importance of One Health in CRE transmission, even in a country with a low CRE prevalence in humans.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Charadriiformes , Saúde Única , Animais , Humanos , Escherichia coli/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Cefotaxima/farmacologia , Água
10.
Animals (Basel) ; 13(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835686

RESUMO

This study reports on the molecular epidemiology of Ingelvac-PRRS-MLV-associated cases in Hungary for the period 2020-2021. Field epidemiology investigations led the experts to conclude that imported pigs, which were shipped through transit stations in Denmark, introduced the vaccine virus. The movement of fatteners and the neglect of disease control measures contributed to the spread of the virus to PRRS-free pig holdings in the vicinity. Deep sequencing was performed to genetically characterize the genes coding for the virion antigens (i.e., ORF2 through ORF7). The study isolates exhibited a range of 0.1 to 1.8% nucleotide sequence divergence from the Ingelvac PRRS MLV and identified numerous polymorphic sites (up to 57 sites) along the amplified 3.2 kilo base pair genomic region. Our findings confirm that some PRRSV-2 vaccine strains can accumulate very high number of point mutations within a short period in immunologically naive pig herds.

11.
Animals (Basel) ; 13(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760219

RESUMO

Fowl adenovirus 1 (FAdV-1) is the main cause of gizzard erosion in chickens. Whole genome sequencing and sequence analyses of 32 FAdV-1 strains from a global collection provided evidence that multiple recombination events have occurred along the entire genome. In gene-wise phylogenies, only the adenoviral pol gene formed a tree topology that corresponded to whole genome-based phylogeny. Virus genetic features that were clearly connected to gizzard erosion were not identified in our analyses. However, some genome variants tended to be more frequently identified from birds with gizzard erosion and strains isolated from healthy birds or birds with non-specific pathologies tended to form common clusters in multiple gene phylogenies. Our data show that the genetic diversity is greater, and the evolutionary mechanisms are more complex within FAdV-1 than previously thought. The implications of these findings for viral pathogenesis and epidemiology await further investigation.

12.
Vet Microbiol ; 280: 109722, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940525

RESUMO

Mycoplasma anserisalpingitidis is a waterfowl colonizing mycoplasma, mainly found in geese. In this study, we compared the whole genomes of five atypical M. anserisalpingitidis strains originating from China, Vietnam and Hungary, with the rest of the collection. Common methods used in the description of species are genomic analyses like the analysis of 16 S - intergenic transcribed spacer (ITS) - 23 S rRNA, of housekeeping genes, of the average nucleotide identity (ANI) and average amino acid identity (AAI) and phenotypic analyses like testing the growth inhibition and the growth parameters of the strains. The atypical strains showed notable genomic differences in all of the genetic analyses: on average ANI and AAI 95% (M. anserisalpingitidis ANI Minimum: 92.45, Maximum: 95.10; AAI Minimum: 93.34, Maximum: 96.37). The atypical strains formed a separate branch among the M. anserisalpingitidis strains in all phylogenetic studies. The small genome size and possibly higher mutation rate of the M. anserisalpingitidis species likely contributed to the observed genetic difference. Based on genetic analyses, the studied strains clearly represent a new genotype of M. anserisalpingitidis. The atypical strains showed slower growth in the medium containing fructose and three of the atypical strains showed diminished growth in the inhibition test. However, no definitive geno-phenotype associations were found regarding the fructose metabolism pathway in the atypical strains. The atypical strains are potentially at an early stage of speciation.


Assuntos
Mycoplasma , Animais , Análise de Sequência de DNA/veterinária , Filogenia , RNA Ribossômico 16S/genética , Mycoplasma/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana/veterinária
13.
Front Vet Sci ; 10: 1327725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260197

RESUMO

A tiling amplicon sequencing protocol was developed to analyse the genome sequence stability of the modified live PRRSV vaccine strain, Porcilis MLV. The backbone of the ARTIC-style protocol was formed by 34 individual primer pairs, which were divided into two primer pools. Primer pairs were designed to amplify 532 to 588 bp fragments of the corresponding genomic region. The amplicons are suitable for sequencing on Illumina DNA sequencers with available 600-cycle sequencing kits. The concentration of primer pairs in the pools was optimized to obtain a balanced sequencing depth along the genome. Deep sequencing data of three vaccine batches were also analysed. All three vaccine batches were very similar to each other, although they also showed single nucleotide variations (SNVs) affecting less than 1 % of the genome. In the three vaccine strains, 113 to 122 SNV sites were identified; at these sites, the minority variants represented a frequency range of 1 to 48.7 percent. Additionally, the strains within the batches contained well-known length polymorphisms; the genomes of these minority deletion mutants were 135 to 222 bp shorter than the variant with the complete genome. Our results show the usefulness of ARTIC-style protocols in the evaluation of the genomic stability of PRRS MLV strains.

14.
Avian Pathol ; 51(6): 535-549, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35866306

RESUMO

Mycoplasma anserisalpingitidis is economically the most important pathogenic Mycoplasma species of waterfowl in Europe and Asia. The lack of commercially available vaccines against M. anserisalpingitidis had prompted this study with the aim to produce temperature-sensitive (ts+) clones as candidates for an attenuated live vaccine. The production of ts+ clones was performed by N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-induced mutagenesis of Hungarian M. anserisalpingitidis field isolates. The clones were administered via eye-drop and intracloacally to 33-day-old geese. Colonization ability was examined by PCR and isolation from the trachea and cloaca, while the serological response of the birds was tested by ELISA. Pathological and histopathological examinations were performed in the eighth week after inoculation. Whole-genome sequence (WGS) analysis of the selected clone and its parent strain was also performed. NTG-treatment provided three ts+ mutants (MA177/1/11, MA177/1/12, MA271). MA271 was detected at the highest rate from cloacal (86.25%) and tracheal (30%) samples, while MA177/1/12 and MA271 elicited remarkable serological responses with 90% of the birds showing seroconversion. Re-isolates of MA271 remained ts+ throughout the experiment. Based on these properties, clone MA271 was found to be the most promising vaccine candidate. WGS analysis revealed 59 mutations in the genome of MA271 when compared to its parent strain, affecting both polypeptides involved in different cellular processes and proteins previously linked to bacterial fitness and virulence. Although further studies are needed to prove that MA271 is in all aspects a suitable vaccine strain, it is expected that this ts+ clone will contribute to the control of M. anserisalpingitidis infection.RESEARCH HIGHLIGHTS Three M. anserisalpingitidis ts+ vaccine candidates were produced by NTG-mutagenesis.Clone MA271 was able to colonize geese and induce a serological response.MA271 re-isolates remained ts+ during the 8-week-long experiment.WGS analysis revealed 59 mutations in the genome of MA271.


Assuntos
Infecções por Mycoplasma , Mycoplasma , Doenças das Aves Domésticas , Animais , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Doenças das Aves Domésticas/microbiologia , Temperatura , Galinhas/microbiologia , Vacinas Bacterianas , Mycoplasma/genética , Metilnitronitrosoguanidina , Células Clonais
15.
Arch Virol ; 167(8): 1721-1724, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633392

RESUMO

In this study, the complete genome of a novel polyomavirus detected in a great cormorant (Phalacrocorax carbo) was characterized. The 5133-bp-long genome of the cormorant polyomavirus has a genomic structure typical of members of the genus Gammapolyomavirus, family Polyomaviridae, containing open reading frames encoding the large and small tumor antigens, viral proteins 1, 2, and 3, and the X protein. The large tumor antigen of the cormorant polyomavirus shares 45.6-50.4% amino acid sequence identity with the homologous sequences of other gammapolyomaviruses. These data, together with results of phylogenetic analysis, suggest that this cormorant polyomavirus should be considered the first member of a new species within the genus Gammapolyomavirus, for which we propose the name "Phalacrocorax carbo polyomavirus 1".


Assuntos
Polyomaviridae , Polyomavirus , Sequência de Aminoácidos , Animais , Aves , Filogenia , Polyomaviridae/genética , Polyomavirus/genética
16.
Life (Basel) ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35454966

RESUMO

Avian infectious bronchitis (IB) is among the major viral respiratory and reproductive diseases of chickens caused by Avian coronavirus. In the African continent, IB was first described in countries located in the Mediterranean basin. In other parts of the continent, the epidemiological situation of IB remains unclear. In this study, the complete genome sequences of five IBV strains, originating from the sub-Saharan area were determined. Phylogenetic analysis based on the full-length S1 sequences identified three lineages (GI-14, GI-16, and GI-19) common in Africa and revealed that a strain, D2334/11/2/13/CI, isolated in Ivory Coast may represent a novel lineage within genotype GI. The maximum inter- and intragenotype sequence identities between this strain and other IBVs were 67.58% and 78.84% (nucleotide) and 64.44% and 78.6% (amino acid), respectively. The whole-genome nucleotide identity of the novel variant shared the highest values with a reference Belgian nephropathogenic strain (B1648, 92.4%) and with another study strain from Ivory Coast (D2334/12/2/13/CI, 94.6%). This study illustrates the importance of epidemiological monitoring of IBV in sub-Saharan Africa, as the area may serve as a focal point for newly emerging viral lineages.

17.
Life (Basel) ; 12(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35330119

RESUMO

Circoviruses occur in a variety of animal species and are common pathogens of mammalian and avian hosts. In our study internal organ samples of wild birds were processed for screening of circoviral sequences. Two novel viruses were identified and characterized in specimens of a little bittern and a European bee-eater that suffered from wing injuries, were weakened, had liver or kidney failures, and finally succumbed at a rescue station. The 1935 nt and 1960 nt long viral DNA genomes exhibited a genomic structure typical for circoviruses and were predicted to encode replication-associated protein in the viral strand, and a capsid protein in the complementary strand of the replicative intermediate DNA form. The genome of the newly described viruses showed 37.6% pairwise identity with each other and ≤41.5% identity with circovirus sequences, and shared a common branch with fish, human and Weddel seal circoviruses in the phylogenetic tree, implying evolutionary relationship among the ancestors of these viruses. Based on the results the little bittern and European bee-eater circoviruses represent two distinct species of the Circovirus genus, Circoviridae family.

18.
Arch Virol ; 167(5): 1349-1353, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306591

RESUMO

A novel gyrovirus was detected in an intestinal specimen of a common pheasant that died due to poult enteritis and mortality syndrome. The genome of the pheasant-associated gyrovirus (PAGyV) is 2353 nucleotides (nt) long and contains putative genes for the VP1, VP2, and VP3 proteins in an arrangement that is typical for gyroviruses. Gyrovirus-specific motifs were identified in both the coding region and the intergenic region of the PAGyV genome. The VP1 of PAGyV shares up to 67.6% pairwise nt sequence identity with reference sequences and forms a distinct branch in the phylogenetic tree. Thus, according to the recently described species demarcation criteria, PAGyV belongs to a novel species in the genus Gyrovirus, family Anelloviridae, for which we propose the name "Gyrovirus phaco 1".


Assuntos
Enterite , Gyrovirus , Animais , Enterite/veterinária , Genoma Viral/genética , Filogenia , Codorniz , Análise de Sequência de DNA , Perus
19.
Microbiol Resour Announc ; 11(1): e0092121, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989623

RESUMO

Lactic acid bacteria (LAB) participate in fermentation processes and have probiotic potential. The genomes of three LAB strains, Lacticaseibacillus rhamnosus cek-R1, Lacticaseibacillus paracasei subsp. paracasei cek-R2, and Lentilactobacillus otakiensis cek-R3, isolated from a beetroot product, were characterized. The results contribute to our understanding of the beneficial properties of LAB.

20.
Viruses ; 13(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452457

RESUMO

Duck hepatitis A virus (DHAV), an avian picornavirus, causes high-mortality acute disease in ducklings. Among the three serotypes, DHAV-1 is globally distributed, whereas DHAV-2 and DHAV-3 serotypes are chiefly restricted to Southeast Asia. In this study, we analyzed the genomic evolution of DHAV-1 strains using extant GenBank records and genomic sequences of 10 DHAV-1 strains originating from a large disease outbreak in 2004-2005, in Hungary. Recombination analysis revealed intragenotype recombination within DHAV-1 as well as intergenotype recombination events involving DHAV-1 and DHAV-3 strains. The intergenotype recombination occurred in the VP0 region. Diversifying selection seems to act at sites of certain genomic regions. Calculations estimated slightly lower rates of evolution of DHAV-1 (mean rates for individual protein coding regions, 5.6286 × 10-4 to 1.1147 × 10-3 substitutions per site per year) compared to other picornaviruses. The observed evolutionary mechanisms indicate that whole-genome-based analysis of DHAV strains is needed to better understand the emergence of novel strains and their geographical dispersal.


Assuntos
Patos/virologia , Evolução Molecular , Genoma Viral , Vírus da Hepatite do Pato/genética , Hepatite Viral Animal/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Genômica , Hepatite Viral Animal/virologia , Hungria/epidemiologia , Filogenia , Doenças das Aves Domésticas/virologia , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA