Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 33(5): 1257-69, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769030

RESUMO

Why are certain bacterial genomes so small and compact? The adaptive genome streamlining hypothesis posits that selection acts to reduce genome size because of the metabolic burden of replicating DNA. To reveal the impact of genome streamlining on cellular traits, we reduced the Escherichia coli genome by up to 20% by deleting regions which have been repeatedly subjects of horizontal transfer in nature. Unexpectedly, horizontally transferred genes not only confer utilization of specific nutrients and elevate tolerance to stresses, but also allow efficient usage of resources to build new cells, and hence influence fitness in routine and stressful environments alike. Genome reduction affected fitness not only by gene loss, but also by induction of a general stress response. Finally, we failed to find evidence that the advantage of smaller genomes would be due to a reduced metabolic burden of replicating DNA or a link with smaller cell size. We conclude that as the potential energetic benefit gained by deletion of short genomic segments is vanishingly small compared with the deleterious side effects of these deletions, selection for reduced DNA synthesis costs is unlikely to shape the evolution of small genomes.


Assuntos
Transferência Genética Horizontal , Tamanho do Genoma , Genoma Bacteriano , Evolução Biológica , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Filogenia
2.
Microb Cell Fact ; 9: 38, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20492662

RESUMO

BACKGROUND: Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential. RESULTS: We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones. CONCLUSIONS: Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.


Assuntos
Escherichia coli/genética , Biologia Computacional , Elementos de DNA Transponíveis , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo , Plasmídeos/toxicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
J Bacteriol ; 190(19): 6448-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689470

RESUMO

Upon induction, Bacillus megaterium 216 produces the bacteriocin megacin A-216, which leads to lysis of the producer cell and kills B. megaterium and a few other bacterial species. The DNA region responsible for megacinogeny was cloned in B. megaterium. The nucleotide sequence of a 5,494-bp-long subfragment was determined, and the function of the genes on this fragment was studied by generating deletions and analyzing their effects on MegA phenotypes. An open reading frame (ORF) encoding a 293-amino-acid protein was identified as the gene (megA) coding for megacin A-216. BLAST searches detected sequence similarity between megacin A-216 and proteins with phospholipase A2 activity. Purified biologically active megacin A-216 preparations contained three proteins. Mass spectrometry analysis showed that the largest protein is the full-length translation product of the megA gene, whereas the two shorter proteins are fragments of the long protein created by cleavage between Gln-185 and Val-186. The molecular masses of the three polypeptides are 32,855, 21,018, and 11,855 Da, respectively. Comparison of different megacin preparations suggests that the intact chain as well as the two combined fragments can form biologically active megacin. An ORF located next to the megA gene and encoding a 91-amino-acid protein was shown to be responsible for the relative immunity displayed by the producer strain against megacin A-216. Besides the megA gene, at least two other genes, including a gene encoding a 188-amino-acid protein sharing high sequence similarity with RNA polymerase sigma factors, were shown to be required for induction of megacin A-216 expression.


Assuntos
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , DNA Bacteriano/genética , Megacinas/biossíntese , Cromatografia em Gel , Clonagem Molecular , DNA Bacteriano/química , Eletroforese em Gel de Poliacrilamida , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA