Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432852

RESUMO

Here we examine the effects of different carrier based bioinoculants on the growth, yield and nutritional value of chickpea and on associated soil nutrients. A consortium of two taxonomically distinct endophytic bacteria-Ensifer adhaerens MSN12 and Bacillus cereus MEN8-have promising plant growth promoting (PGP) attributes. We demonstrate their delivery from the laboratory to the field via the formulation of an effective bioinoculant with economic and accessible carriers. Sugarcane straw ash (SCSA) was found to be an efficient carrier and bioformulation for enhancing viability and shelf-life of strains up to 12 months. A bioformulation containing an SCSA-based consortium (MSN12 + MEN8) increased seed germination by 7%, plant weight by 29%, length by 17%, seed-yield by 12%, harvesting index by 14% and proximate nutritional constituents by 20% over consortium treatment without SCSA. In addition, the bioformulation of post-harvest treated soil improved the physico-chemical properties of the soil in comparison to a pre-sowing SCSA-based bioformulation treated crop, being fortified in different proximate nutritional constituents including dry matter (30%), crude protein (45%), crude fiber (35%), and ether extract (40%) in comparison to the control. Principal component analysis and scattered matrix plots showed a positive correlation among the treatments, which also validates improvement in the soil nutrient components and proximate constituents by T6 treatment (MSN12 + MEN8 + SCSA). The above results suggest efficiency of SCSA not only as a carrier material but also to support microbial growth for adequate delivery of lab strains as a substitute for chemi-fertilizers.

2.
3 Biotech ; 12(9): 234, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35996675

RESUMO

Chemical fertilizers impart deleterious effects on crop productivity and its nutrients which is a serious concern among agriculturist. Current research focuses on the commercial preparation of an eco-friendly and cost-effective bioformulation using buffalo dung slurry and beneficial plant growth-promoting (PGP) and biofilm forming strains. 40 strains were isolated from buffalo dung showing PGP activities. Among them, 03 strains were further selected to sequence by 16S rRNA technology and identified as Pseudomonas aeruginosa BUFF12, Proteus mirabilis BUFF14, Enterobacter xiangfangensis BUFF38. The strains were used for consortium preparation on the basis of increase in PGP activity. The consortium of strains increases in vitro PGP attributes at different percentage, i.e., 22% increase in IAA production, 10% increase in siderophore production, 5% increase in P- solubilization, 8% increase in K- solubilization, and 11% increase in S-oxidation. Three carrier materials, i.e., molasses of sugarcane, rice gruel, and buffalo dung slurry, were chosen to conduct the study. Among them, dung slurry proved to be an effective supportive material on the basis of their physico-chemical analysis and viability of strains for long-term storage. It maintained the population mixture of strains (9.4 × 108 cfu/ml) for 120 DAI followed by molasses (9.1 × 108 cfu/ml) and rice gruel (7.9 × 108 cfu/ml). These beneficial strains were further applied in field for crop productivity and slurry-based formulation with mixture of strains exhibited incredible plant growth after definite interval of time. Chemotactic activity proved these strains as strong root colonizers which was confirmed by Field Emission Scanning Electron Microscopy (FE-SEM). This research disseminates a successful technology to develop an eco-friendly bioformulation of buffalo dung slurry augmenting the crop growth in an eco-friendly manner leading to sustainable agriculture.

3.
Arch Microbiol ; 203(8): 5043-5054, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292347

RESUMO

Rhizobacteria are vital component of soil-plant interfaces which helps in plant growth responses and disease management. Precisely, the role of biosurfactant production by rhizobacteria in biocontrol mechanisms is underscored. The current study explores the destructive effect of a biosurfactant-producing bacterium Bacillus cereus BS14 on fungal growth under in vitro experiments and showed in vivo reduction of disease severity in pulse crop Vigna mungo. In this study, B. cereus BS14 was observed as plant growth-promoting rhizobacterium (PGPR) based on abilities of production of phytohormone and HCN, phosphate solubilization and biocontrol of Macrophomina phaseolina. The purified biosurfactant from BS14 inhibited the fungal growth by arresting radially growing mycelia. Scanning electron microscope (SEM) study revealed deformities at cellular level in the mycelia of M. phaseolina. The biosurfactant of Bacillus BS14 was identified as cyclic siloxane in GC-MS spectroscopy and FT-IR spectroscopy analyses. In the pot trial studies, B. cereus BS14 proved its efficiency for the growth promotion of Vigna mungo and significantly reduced disease severity index. The present study concludes that biosurfactant of rhizobacterial origin and rhizobacteria can serve for biological control, improvement in crop production and agricultural sustainability. In future, it can be developed as biological control and biofertilizer formulations for legume crops, and commercialized for routine farming practices.


Assuntos
Ascomicetos , Vigna , Bacillus cereus , Doenças das Plantas , Siloxanas , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biol Proced Online ; 23(1): 5, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526007

RESUMO

COVID-19, a pandemic of the 21st century caused by novel coronavirus SARS-CoV-2 was originated from China and shallowed world economy and human resource. The medical cures via herbal treatments, antiviral drugs, and vaccines still in progress, and studying rigorously. SARS-CoV-2 is more virulent than its ancestors due to evolution in the spike protein(s), mediates viral attachment to the host's membranes. The SARS-CoV-2 receptor-binding spike domain associates itself with human angiotensin-converting enzyme 2 (ACE-2) receptors. It causes respiratory ailments with irregularities in the hepatic, nervous, and gastrointestinal systems, as reported in humans suffering from COVID-19 and reviewed in the present article. There are several approaches, have been put forward by many countries under the world health organization (WHO) recommendations and some trial drugs were introduced for possible treatment of COVID-19, such as Lopinavir or Ritonavir, Arbidol, Chloroquine (CQ), Hydroxychloroquine (HCQ) and most important Remdesivir including other like Tocilizumab, Oritavancin, Chlorpromazine, Azithromycin, Baricitinib, etc. RT-PCR is the only and early detection test available besides the rapid test kit (serodiagnosis) used by a few countries due to unreasonable causes. Development of vaccine by several leader of pharmaceutical groups still under trial or waiting for approval for mass inoculation. Management strategies have been evolved by the recommendations of WHO, specifically important to control COVID-19 situations, in the pandemic era. This review will provide a comprehensive collection of studies to support future research and enhancement in our wisdom to combat COVID-19 pandemic and to serve humanity.

5.
Arch Microbiol ; 202(9): 2461-2470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32607724

RESUMO

The present study was aimed to study the effect of bacteria inhabiting in buffalo dung on nutritional properties of soil and plant. Three beneficial bacteria Proteus mirabilis, Pseudomonas aeruginosa, and Enterobacter xiangfangensis were isolated from buffalo dung to evaluate for their effects individually as well as in consortium. The combined effect of P. mirabilis and P. aeruginosa showed a significant enhancement in different biological parameters of Foeniculum vulgare such as primary branch (99.32%), secondary branch (98.32%), number of umbels (87.62%), number of umbellets (99.85%), number of seeds (104.94%), grain yield (62.38%), biological yield (35.99%), and harvest index (19.48%). Consortium of these potent bacteria also enhanced proximate constituents such as total ash (49.79%), ether extract (63.06%), crude fibre (48.91%), moisture content (33.40%), dry matter (31.45%), acid insoluble ash (33.20%), and crude protein (40.73%). A highly significant correlation (p ≤ 0.01) was found between nitrogen (r = 0.97), phosphorous (r = 0.95), and potassium (r = 0.97) contents of soil. This research enhances the knowledge of the effect of plant growth-promoting bacteria on nutrient properties of soil and fennel which deliver a new index for healthier use in organic agricultural practices.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fezes/microbiologia , Foeniculum/microbiologia , Microbiologia do Solo , Animais , Búfalos , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Desenvolvimento Vegetal , Potássio/análise , Potássio/metabolismo , Sementes/química , Solo/química
6.
Can J Microbiol ; 66(2): 111-124, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31671281

RESUMO

This study emphasizes the beneficial role of rhizo-competitive Bacillus spp. isolated from rhizospheric and non-rhizospheric soil in plant growth promotion and yield improvement via nitrogen fixation and biocontrol of Sclerotium rolfsii causing foot rot disease in Eleusine coracana (Ragi). The selection of potent rhizobacteria was based on plant-growth-promoting attributes using Venn set diagram and Bonitur scale. Bacillus pumilus MSTA8 and Bacillus amyloliquefaciens MSTD26 were selected because they were effective in root colonization, rhizosphere competence, and biofilm formation using root exudates of E. coracana L. rich with carbohydrates, proteins, and amino acids. The relative chemotaxis index of the isolates expressed the invasive behavior of the rhizosphere. During pot and field trials, the consortium of the rhizobacteria in a vermiculite carrier increased the grain yield by 37.87%, with a significant harvest index of 16.45. Soil analysis after the field trial revealed soil reclamation potentials to manage soil nutrition and fertility. Both indexes ensured crop protection and production in eco-safe ways and herald commercialization of Bacillus bio-inoculant for improvement in crop production and disease management of E. coracana.


Assuntos
Bacillus/fisiologia , Basidiomycota/fisiologia , Eleusine/microbiologia , Doenças das Plantas/prevenção & controle , Exsudatos de Plantas/análise , Microbiologia do Solo , Bacillus amyloliquefaciens/fisiologia , Bacillus pumilus/fisiologia , Quimiotaxia , Eleusine/crescimento & desenvolvimento , Fixação de Nitrogênio , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA