Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 117(2): 590-598, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882414

RESUMO

The Pisum sativum (pea) mutants degenerate leaves (dgl) and bronze (brz) accumulate large amounts of iron in leaves. First described several decades ago, the two mutants have provided important insights into iron homeostasis in plants but the underlying mutations have remained unknown. Using exome sequencing we identified an in-frame deletion associated with dgl in a BRUTUS homolog. The deletion is absent from wild type and the original parent line. BRUTUS belongs to a small family of E3 ubiquitin ligases acting as negative regulators of iron uptake in plants. The brz mutation was previously mapped to chromosome 4, and superimposing this region to the pea genome sequence uncovered a mutation in OPT3, encoding an oligopeptide transporter with a plant-specific role in metal transport. The causal nature of the mutations was confirmed by additional genetic analyses. Identification of the mutated genes rationalizes many of the previously described phenotypes and provides new insights into shoot-to-root signaling of iron deficiency. Furthermore, the non-lethal mutations in these essential genes suggest new strategies for biofortification of crops with iron.


Assuntos
Ferro , Pisum sativum , Ferro/metabolismo , Pisum sativum/genética , Metais , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Membrana Transportadoras/genética
2.
J Exp Bot ; 74(18): 5767-5782, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37393944

RESUMO

The mineral micronutrients zinc (Zn) and iron (Fe) are essential for plant growth and human nutrition, but interactions between the homeostatic networks of these two elements are not fully understood. Here we show that loss of function of BTSL1 and BTSL2, which encode partially redundant E3 ubiquitin ligases that negatively regulate Fe uptake, confers tolerance to Zn excess in Arabidopsis thaliana. Double btsl1 btsl2 mutant seedlings grown on high Zn medium accumulated similar amounts of Zn in roots and shoots to the wild type, but suppressed the accumulation of excess Fe in roots. RNA-sequencing analysis showed that roots of mutant seedlings had relatively higher expression of genes involved in Fe uptake (IRT1, FRO2, and NAS) and in Zn storage (MTP3 and ZIF1). Surprisingly, mutant shoots did not show the transcriptional Fe deficiency response which is normally induced by Zn excess. Split-root experiments suggested that within roots the BTSL proteins act locally and downstream of systemic Fe deficiency signals. Together, our data show that constitutive low-level induction of the Fe deficiency response protects btsl1 btsl2 mutants from Zn toxicity. We propose that BTSL protein function is disadvantageous in situations of external Zn and Fe imbalances, and formulate a general model for Zn-Fe interactions in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ferro/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Curr Biol ; 33(8): 1502-1512.e8, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36963385

RESUMO

Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.


Assuntos
Asteraceae , Dípteros , Orchidaceae , Masculino , Feminino , Abelhas/genética , Animais , Polinização/fisiologia , Redes Reguladoras de Genes , Dípteros/genética , Flores/fisiologia , Asteraceae/genética , Orchidaceae/fisiologia
4.
Plant Physiol ; 191(1): 528-541, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308454

RESUMO

Dietary deficiencies of iron and zinc cause human malnutrition that can be mitigated by biofortified staple crops. Conventional breeding approaches to increase grain mineral concentrations in wheat (Triticum aestivum L.) have had only limited success, and our understanding of the genetic and physiological barriers to altering this trait is incomplete. Here we demonstrate that a transgenic approach combining endosperm-specific expression of the wheat VACUOLAR IRON TRANSPORTER gene TaVIT2-D with constitutive expression of the rice (Oryza sativa) NICOTIANAMINE SYNTHASE gene OsNAS2 significantly increases the total concentration of zinc and relocates iron to white-flour fractions. In two distinct bread wheat cultivars, we show that the so called VIT-NAS construct led to a two-fold increase in zinc in wholemeal flour, to ∼50 µg g-1. Total iron was not significantly increased, but redistribution within the grain resulted in a three-fold increase in iron in highly pure, roller-milled white flour, to ∼25 µg g-1. Interestingly, expression of OsNAS2 partially restored iron translocation to the aleurone, which is iron depleted in grain overexpressing TaVIT2 alone. A greater than three-fold increase in the level of the natural plant metal chelator nicotianamine in the grain of VIT-NAS lines corresponded with improved iron and zinc bioaccessibility in white flour. The growth of VIT-NAS plants in the greenhouse was indistinguishable from untransformed controls. Our results provide insights into mineral translocation and distribution in wheat grain and demonstrate that the individual and combined effects of the two transgenes can enhance the nutritional quality of wheat beyond what is possible by conventional breeding.


Assuntos
Farinha , Zinco , Humanos , Zinco/metabolismo , Farinha/análise , Triticum/genética , Triticum/metabolismo , Melhoramento Vegetal , Minerais , Grão Comestível/genética , Grão Comestível/metabolismo
5.
Sci Rep ; 12(1): 10367, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725884

RESUMO

Biological nitrogen fixation (BNF) is the reduction of N2 into NH3 in a group of prokaryotes by an extremely O2-sensitive protein complex called nitrogenase. Transfer of the BNF pathway directly into plants, rather than by association with microorganisms, could generate crops that are less dependent on synthetic nitrogen fertilizers and increase agricultural productivity and sustainability. In the laboratory, nitrogenase activity is commonly determined by measuring ethylene produced from the nitrogenase-dependent reduction of acetylene (ARA) using a gas chromatograph. The ARA is not well suited for analysis of large sample sets nor easily adapted to automated robotic determination of nitrogenase activities. Here, we show that a reduced sulfonated viologen derivative (S2Vred) assay can replace the ARA for simultaneous analysis of isolated nitrogenase proteins using a microplate reader. We used the S2Vred to screen a library of NifH nitrogenase components targeted to mitochondria in yeast. Two NifH proteins presented properties of great interest for engineering of nitrogen fixation in plants, namely NifM independency, to reduce the number of genes to be transferred to the eukaryotic host; and O2 resistance, to expand the half-life of NifH iron-sulfur cluster in a eukaryotic cell. This study established that NifH from Dehalococcoides ethenogenes did not require NifM for solubility, [Fe-S] cluster occupancy or functionality, and that NifH from Geobacter sulfurreducens was more resistant to O2 exposure than the other NifH proteins tested. It demonstrates that nitrogenase components with specific biochemical properties such as a wider range of O2 tolerance exist in Nature, and that their identification should be an area of focus for the engineering of nitrogen-fixing crops.


Assuntos
Fixação de Nitrogênio , Nitrogenase , Colorimetria , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Plant Physiol ; 188(2): 997-1013, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718778

RESUMO

Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Lipoilação/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
7.
New Phytol ; 231(4): 1644-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914919

RESUMO

Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.


Assuntos
Ferro , Triticum , Grão Comestível , Ácido Fítico , Sementes
8.
Plant Physiol ; 186(3): 1507-1525, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856472

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Di-Hidrolipoamida Desidrogenase/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Genes de Plantas , Variação Genética , Genótipo , Proteínas Ferro-Enxofre/genética
10.
J Med Genet ; 58(5): 314-325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32518176

RESUMO

BACKGROUND: The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS: Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS: The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION: We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.


Assuntos
Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/fisiopatologia , Linhagem , RNA-Seq , Sequenciamento do Exoma , Adulto Jovem
11.
New Phytol ; 228(2): 651-666, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32521047

RESUMO

The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron, and questions remain regarding which transporters are involved. Here, we characterize two nodule-specific Vacuolar iron Transporter-Like (VTL) proteins in Medicago truncatula. Localization of fluorescent fusion proteins and mutant studies were carried out to correlate with existing RNA-seq data showing differential expression of VTL4 and VTL8 during early and late infection, respectively. The vtl4 insertion lines showed decreased nitrogen fixation capacity associated with more immature nodules and less elongated bacteroids. A mutant line lacking the tandemly-arranged VTL4-VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was almost fully restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a moderate decrease in luminescence signal was observed in vtl4 mutant nodules and a strong decrease in 13U nodules. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. These data indicate that VTL8, the closest homologue of SEN1 in Lotus japonicus, is the main route for delivering iron to symbiotic rhizobia. We propose that a failure in iron protein maturation leads to early senescence of the bacteroids.


Assuntos
Medicago truncatula , Ferro , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
12.
Proc Natl Acad Sci U S A ; 116(35): 17584-17591, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413196

RESUMO

Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Homeostase , Modelos Biológicos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
13.
New Phytol ; 224(4): 1569-1584, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31372999

RESUMO

A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutationa Redutase/metabolismo , Glutationa/metabolismo , Plastídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Glutationa Redutase/genética , Mitocôndrias/metabolismo , Mutação , Oxirredução , Plantas Geneticamente Modificadas , Plastídeos/genética , Sementes/genética
14.
Plant Cell Physiol ; 60(7): 1447-1456, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058958

RESUMO

Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.


Assuntos
Biofortificação , Produtos Agrícolas/genética , Ferro/metabolismo , Biofortificação/métodos , Edição de Genes , Melhoramento Vegetal , Plantas Geneticamente Modificadas
15.
Front Plant Sci ; 10: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815004

RESUMO

Iron (Fe) is an essential nutrient for plants, but at the same time its redox properties can make it a dangerous toxin inside living cells. Homeostasis between uptake, use and storage of Fe must be maintained at all times. A small family of unique hemerythrin E3 ubiquitin ligases found in green algae and plants play an important role in avoiding toxic Fe overload, acting as negative regulators of Fe homeostasis. Protein interaction data showed that they target specific transcription factors for degradation by the 26S proteasome. It is thought that the activity of the E3 ubiquitin ligases is controlled by Fe binding to the N-terminal hemerythrin motifs. Here, we discuss what we have learned so far from studies on the HRZ (Hemerythrin RING Zinc finger) proteins in rice, the homologous BTS (BRUTUS) and root-specific BTSL (BRUTUS-LIKE) in Arabidopsis. A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants.

16.
Hum Mol Genet ; 27(21): 3697-3709, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982452

RESUMO

Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Yarrowia/metabolismo , Sequência de Aminoácidos , Complexo I de Transporte de Elétrons/genética , Humanos , Microrganismos Geneticamente Modificados , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Temperatura , Yarrowia/genética
17.
J Nutr ; 148(8): 1229-1235, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939292

RESUMO

Background: Iron deficiency is an enduring global health problem that requires new remedial approaches. Iron absorption from soybean-derived ferritin, an ∼550-kDa iron storage protein, is comparable to bioavailable ferrous sulfate (FeSO4). However, the absorption of ferritin is reported to involve an endocytic mechanism, independent of divalent metal ion transporter 1 (DMT-1), the transporter for nonheme iron. Objective: Our overall aim was to examine the potential of purified ferritin from peas (Pisum sativum) as a food supplement by measuring its stability under gastric pH treatment and the mechanisms of iron uptake into Caco-2 cells. Methods: Caco-2 cells were treated with native or gastric pH-treated pea ferritin in combination with dietary modulators of nonheme iron uptake, small interfering RNA targeting DMT-1, or chemical inhibitors of endocytosis. Cellular ferritin formation, a surrogate measure of iron uptake, and internalization of pea ferritin with the use of specific antibodies were measured. The production of reactive oxygen species (ROS) in response to equimolar concentrations of native pea ferritin and FeSO4 was also compared. Results: Pea ferritin exposed to gastric pH treatment was degraded, and the released iron was transported into Caco-2 cells by DMT-1. Inhibitors of DMT-1 and nonheme iron absorption reduced iron uptake by 26-40%. Conversely, in the absence of gastric pH treatment, the iron uptake of native pea ferritin was unaffected by inhibitors of nonheme iron absorption, and the protein was observed to be internalized in Caco-2 cells. Chlorpromazine (clathrin-mediated endocytosis inhibitor) reduced the native pea ferritin content within cells by ∼30%, which confirmed that the native pea ferritin was transported into cells via a clathrin-mediated endocytic pathway. In addition, 60% less ROS production resulted from native pea ferritin in comparison to FeSO4. Conclusion: With consideration that nonheme dietary inhibitors display no effect on iron uptake and the low oxidative potential relative to FeSO4, intact pea ferritin appears to be a promising iron supplement.


Assuntos
Endocitose , Ferritinas/farmacocinética , Ácido Gástrico , Ferro/metabolismo , Pisum sativum/química , Proteínas de Plantas/farmacocinética , Estômago/química , Anemia Ferropriva/tratamento farmacológico , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Proteínas de Transporte de Cátions/metabolismo , Dieta , Proteínas Alimentares/isolamento & purificação , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacocinética , Proteínas Alimentares/uso terapêutico , Suplementos Nutricionais , Ferritinas/isolamento & purificação , Ferritinas/metabolismo , Ferritinas/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Glycine max/química
18.
Sci Rep ; 8(1): 6865, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720667

RESUMO

Pea seeds are widely consumed in their immature form, known as garden peas and petit pois, mostly after preservation by freezing or canning. Mature dry peas are rich in iron in the form of ferritin, but little is known about the content, form or bioavailability of iron in immature stages of seed development. Using specific antibodies and in-gel iron staining, we show that ferritin loaded with iron accumulated gradually during seed development. Immunolocalization and high-resolution secondary ion mass spectrometry (NanoSIMS) revealed that iron-loaded ferritin was located at the surface of starch-containing plastids. Standard cooking procedures destabilized monomeric ferritin and the iron-loaded form. Iron uptake studies using Caco-2 cells showed that the iron in microwaved immature peas was more bioavailable than in boiled mature peas, despite similar levels of soluble iron in the digestates. By manipulating the levels of phytic acid in the digestates we demonstrate that phytic acid is the main inhibitor of iron uptake from mature peas in vitro. Taken together, our data show that immature peas and mature dry peas contain similar levels of ferritin-iron, which is destabilized during cooking. However, iron from immature peas is more bioavailable because of lower phytic acid levels compared to mature peas.


Assuntos
Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Células CACO-2 , Culinária/métodos , Ferritinas/metabolismo , Humanos , Micro-Ondas , Pisum sativum/genética , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação
19.
Curr Biol ; 28(10): 1614-1619.e3, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29731304

RESUMO

Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I.


Assuntos
Complexo I de Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Viscum album/genética , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação Oxidativa , Viscum album/metabolismo
20.
Plant Physiol ; 177(3): 1267-1276, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784767

RESUMO

During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4 Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Germinação/fisiologia , Ferro/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Mutação , Plastídeos/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA