Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675737

RESUMO

The tumor-draining lymph nodes (tdLN) are the initial site of metastases and are the prime site for generating robust antitumor responses. In this study, we explored the efficacy of a universal immune activator (ImmAct) targeted to the tdLN. This approach can be viewed as an attempt to turn a cold, unresponsive tdLN into a hot, responsive site. The adjuvant antitumor efficacy of our novel intranodal injection was evaluated in an aggressive metastatic mammary carcinoma murine model. The cancer cells were inoculated subcutaneously in the lower quadrant of the mouse to provoke the tdLN (inguinal lymph node). The study encompasses a range of methodologies, including in vivo and in vitro assays and high-dimensional flow cytometry analysis. Our findings demonstrated that intranodal administration of ImmAct following the dissection of the primary tumor led to improved tumor-free survival and minimized weight loss. ImmAct led to both local and systemic alterations in the cellular and humoral immunity. Additionally, after ImmAct treatment, non-responders showed a higher rate of exhausted CD8+ T cells compared to responders. Indeed, our innovative approach surpassed the gold standard surgery of sentinel lymph node excision. Overall, intranodal administration of ImmAct yielded a robust antitumor immune response, offering protection against micrometastases and relapse.

2.
Allergy ; 79(1): 184-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815010

RESUMO

BACKGROUND: Virus-like particle (VLP) Peanut is a novel immunotherapeutic vaccine candidate for the treatment of peanut allergy. The active pharmaceutical ingredient represents cucumber mosaic VLPs (CuMVTT -VLPs) that are genetically fused with one of the major peanut allergens, Ara h 2 (CuMVTT -Ara h 2). We previously demonstrated the immunogenicity and the protective capacity of VLP Peanut-based immunization in a murine model for peanut allergy. Moreover, a Phase I clinical trial has been initiated using VLP Peanut material manufactured following a GMP-compliant manufacturing process. Key product characterization studies were undertaken here to understand the role and contribution of critical quality attributes that translate as predictive markers of immunogenicity and protective efficacy for clinical vaccine development. METHOD: The role of prokaryotic RNA encapsulated within VLP Peanut on vaccine immunogenicity was assessed by producing a VLP Peanut batch with a reduced RNA content (VLP Peanut low RNA). Immunogenicity and peanut allergen challenge studies were conducted with VLP Peanut low RNA, as well as with VLP Peanut in WT and TLR 7 KO mice. Furthermore, mass spectrometry and SDS-PAGE based methods were used to determine Ara h 2 antigen density on the surface of VLP Peanut particles. This methodology was subsequently applied to investigate the relationship between Ara h 2 antigen density and immunogenicity of VLP Peanut. RESULTS: A TLR 7 dependent formation of Ara h 2 specific high-avidity IgG antibodies, as well as a TLR 7 dependent change in the dominant IgG subclass, was observed following VLP Peanut vaccination, while total allergen-specific IgG remained relatively unaffected. Consistently, a missing TLR 7 signal caused only a weak decrease in allergen tolerability after vaccination. In contrast, a reduced RNA content for VLP Peanut resulted in diminished total Ara h 2 specific IgG responses, followed by a significant impairment in peanut allergen tolerability. The discrepant effect on allergen tolerance caused by an absent TLR 7 signal versus a reduced RNA content is explained by the observation that VLP Peanut-derived RNA not only stimulates TLR 7 but also TLR 3. Additionally, a strong correlation was observed between the number of Ara h 2 antigens displayed on the surface of VLP Peanut particles and the vaccine's immunogenicity and protective capacity. CONCLUSIONS: Our findings demonstrate that prokaryotic RNA encapsulated within VLP Peanut, including antigen density of Ara h 2 on viral particles, are key contributors to the immunogenicity and protective capacity of the vaccine. Thus, antigenicity and RNA content are two critical quality attributes that need to be determined at the stage of manufacturing, providing robust information regarding the immunogenicity and protective capacity of VLP Peanut in the mouse which has translational relevance to the human setting.


Assuntos
Hipersensibilidade a Amendoim , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Hipersensibilidade a Amendoim/prevenção & controle , Receptor 7 Toll-Like , Alérgenos , Arachis , Imunoglobulina G , RNA , Antígenos de Plantas
3.
PLoS One ; 18(12): e0287278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051715

RESUMO

Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes.


Assuntos
Lolium , Vírus de RNA , Vírus , DNA Complementar/genética , Lolium/genética , RNA-Seq , Reprodutibilidade dos Testes , RNA Guia de Sistemas CRISPR-Cas , Vírus de RNA/genética , Genoma Viral , Vírus/genética , RNA Viral/genética , Fases de Leitura Aberta/genética
4.
Front Microbiol ; 14: 1154990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032851

RESUMO

Virus-like particles (VLPs) are virus-derived artificial nanostructures that resemble a native virus-stimulating immune system through highly repetitive surface structures. Improved safety profiles, flexibility in vaccine construction, and the ease of VLP production and purification have highlighted VLPs as attractive candidates for universal vaccine platform generation, although exploration of different types of expression systems for their development is needed. Here, we demonstrate the construction of several simple Escherichia coli expression systems for the generation of eggplant mosaic virus (EMV) VLP-derived vaccines. We used different principles of antigen incorporation, including direct fusion of EMV coat protein (CP) with major cat allergen Feld1, coexpression of antigen containing and unmodified (mosaic) EMV CPs, and two coexpression variants of EMV VLPs and antigen using synthetic zipper pair 18/17 (SYNZIP 18/17), and coiled-coil forming peptides E and K (Ecoil/Kcoil). Recombinant Fel d 1 chemically coupled to EMV VLPs was included as control experiments. All EMV-Feld1 variants were expressed in E. coli, formed Tymovirus-like VLPs, and were used for immunological evaluation in healthy mice. The immunogenicity of these newly developed vaccine candidates demonstrated high titers of Feld1-specific Ab production; however, a comparably high immune response against carrier EMV was also observed. Antibody avidity tests revealed very specific Ab production (more than 50% specificity) for four out of the five vaccine candidates. Native Feld1 recognition and subclass-specific antibody tests suggested that the EMV-SZ18/17-Feld1 complex and chemically coupled EMV-Feld1 vaccines may possess characteristics for further development.

5.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982419

RESUMO

Sobemoviruses encode serine-like 3C proteases (Pro) that participate in the processing and maturation of other virus-encoded proteins. Its cis and trans activity is mediated by the naturally unfolded virus-genome-linked protein (VPg). Nuclear magnetic resonance studies show a Pro-VPg complex interaction and VPg tertiary structure; however, information regarding structural changes of the Pro-VPg complex during interaction is lacking. Here, we solved a full Pro-VPg 3D structure of ryegrass mottle virus (RGMoV) that demonstrates the structural changes in three different conformations due to VPg interaction with Pro. We identified a unique site of VPg interaction with Pro that was not observed in other sobemoviruses, and observed different conformations of the Pro ß2 barrel. This is the first report of a full plant Pro crystal structure with its VPg cofactor. We also confirmed the existence of an unusual previously unmapped cleavage site for sobemovirus Pro in the transmembrane domain: E/A. We demonstrated that RGMoV Pro in cis activity is not regulated by VPg and that in trans, VPg can also mediate Pro in free form. Additionally, we observed Ca2+ and Zn2+ inhibitory effects on the Pro cleavage activity.


Assuntos
Lolium , Vírus de RNA , Proteólise , Peptídeo Hidrolases/metabolismo , Lolium/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Virais/metabolismo , Endopeptidases/metabolismo , Vírus de RNA/metabolismo , Proteases Virais 3C
6.
Allergy ; 78(7): 1980-1996, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883475

RESUMO

BACKGROUND: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy. METHODS AND RESULTS: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T-cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitized mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. CONCLUSION: VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Camundongos , Animais , Hipersensibilidade a Amendoim/prevenção & controle , Estudos Prospectivos , Antígenos de Plantas , Alérgenos , Arachis
7.
Microorganisms ; 10(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36296209

RESUMO

The agricultural importance of sea buckthorn (SBT; Hippophae rhamnoides L.) is rapidly increasing. Several bacterial and fungal pathogens infecting SBT have been identified and characterized; however, the viral pathogens are not yet known. In this study, we identified, isolated, and sequenced a virus from a wild plantation of SBT for the first time. Sequence analysis of the obtained viral genome revealed high similarity with several viruses belonging to the genus Marafivirus. The genome of the new virus is 6989 nucleotides (nt) in length according to 5', 3' RACE (without polyA-tail), with 5' and 3' 133 and 109 nt long untranslated regions, respectively. The viral genome encoded two open reading frames (ORFs). ORF1 encoded a polyprotein of 1954 amino acids with the characteristic marafivirus non-structural protein domains-methyltransferase, Salyut domain, papain-like cysteine protease, helicase, and RNA-dependent RNA polymerase. ORF1 was separated from ORF2 by 6 nt, encoding the coat protein (CP) with typical signatures of minor and major forms. Both CP forms were cloned and expressed in a bacterial expression system. Only the major CP was able to self-assemble into 30 nm virus-like particles that resembled the native virus, thus demonstrating that minor CP is not essential for virion assembly.

8.
Vaccines (Basel) ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35455234

RESUMO

Plant-based virus-like particle (VLP) vaccines have been studied for years, demonstrating their potential as antigen-presenting platforms. In this paper, we describe the development of, and compare between, simple Escherichia coli-based antigen display platforms for the generation of potato virus Y (PVY) VLP-derived vaccines, thus allowing the production of vaccines from a single bacterial cell culture. We constructed four systems with the major cat allergen Fel d 1; namely, direct fusion with plant virus PVY coat protein (CP), mosaic PVY VLPs, and two coexpression variants of conjugates (SpyTag/SpyCatcher) allowing coexpression and conjugation directly in E. coli cells. For control experiments, we included PVY VLPs chemically coupled with Fel d 1. All constructed PVY-Fel d 1 variants were well expressed and soluble, formed PVY-like filamentous particles, and were recognized by monoclonal Fel d 1 antibodies. Our results indicate that all vaccine variants induced high titers of anti-Fel d 1 antibodies in murine models. Mice that were immunized with the chemically coupled Fel d 1 antigen exhibited the highest antibody titers and antibody-antigen interaction specificity, as detected by binding avidity and recognition of native Fel d 1. IgG1 subclass antibodies were found to be the dominant IgG class against PVY-Fel d 1. PVY CP-derived VLPs represent an efficient platform for the comparison of various antigen presentation systems to help evaluate different vaccine designs.

9.
Allergy ; 77(8): 2446-2458, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403221

RESUMO

BACKGROUND: The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS: In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS: CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike-IgG and IgA antibodies of high avidity. Local immune response was assessed, and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs). CONCLUSION: Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus/imunologia
10.
Allergy ; 77(1): 243-257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496033

RESUMO

BACKGROUND: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS: Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS: Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION: Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Neutralizantes , Formação de Anticorpos , Vacinas contra COVID-19 , Controle de Doenças Transmissíveis , Humanos , Camundongos , Coelhos , SARS-CoV-2
11.
NPJ Vaccines ; 6(1): 107, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429427

RESUMO

MERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV). In order to produce a vaccine that is readily scalable, we genetically fused the receptor-binding motif (RBM) of MERS-CoV spike protein into the surface of cucumber-mosaic virus VLPs. The employed CuMVTT-VLPs represent a new immunologically optimized vaccine platform incorporating a universal T cell epitope derived from tetanus toxin (TT). The resultant vaccine candidate (mCuMVTT-MERS) is a mosaic particle and consists of unmodified wild type monomers and genetically modified monomers displaying RBM, co-assembling within E. coli upon expression. mCuMVTT-MERS vaccine is self-adjuvanted with ssRNA, a TLR7/8 ligand which is spontaneously packaged during the bacterial expression process. The developed vaccine candidate induced high anti-RBD and anti-spike antibodies in a murine model, showing high binding avidity and an ability to completely neutralize MERS-CoV/EMC/2012 isolate, demonstrating the protective potential of the vaccine candidate for dromedaries and humans.

12.
J Control Release ; 331: 296-308, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33450322

RESUMO

Vaccine-induced immune response can be greatly enhanced by mimicking pathogen properties. The size and the repetitive geometric shape of virus-like particles (VLPs) influence their immunogenicity by facilitating drainage to secondary lymphoid organs and enhancing interaction with and activation of B cells and innate humoral immune components. VLPs derived from the plant Bromovirus genus, specifically cowpea chlorotic mottle virus (CCMV), are T = 3 icosahedral particles. (T) is the triangulation number that refers to the number and arrangements of the subunits (pentamers and hexamers) of the VLPs. CCMV-VLPs can be easily expressed in an E. coli host system and package ssRNA during the expression process. Recently, we have engineered CCMV-VLPs by incorporating the universal tetanus toxin (TT) epitope at the N-terminus. The modified CCMVTT-VLPs successfully form icosahedral particles T = 3, with a diameter of ~30 nm analogous to the parental VLPs. Interestingly, incorporating TT epitope at the C-terminus of CCMVTT-VLPs results in the formation of Rod-shaped VLPs, ~1 µm in length and ~ 30 nm in width. In this study, we have investigated the draining kinetics and immunogenicity of both engineered forms (termed as Round-shaped CCMVTT-VLPs and Rod-shaped CCMVTT-VLPs) as potential B cell immunogens using different in vitro and in vivo assays. Our results reveal that Round-shaped CCMVTT-VLPs are more efficient in draining to secondary lymphoid organs to charge professional antigen-presenting cells as well as B cells. Furthermore, compared to Rod-shaped CCMVTT-VLPs, Round-shaped CCMVTT-VLPs led to more than 100-fold increased systemic IgG and IgA responses accompanied by prominent formation of splenic germinal centers. Round-shaped CCMVTT-VLPs could also polarize the induced T cell response toward Th1. To our knowledge, this is the first study investigating and comparing the draining kinetics and immunogenicity of one and the same VLP monomer forming nano-sized icosahedra or rods in the micrometer size.


Assuntos
Bromovirus , Vacinas de Partículas Semelhantes a Vírus , Formação de Anticorpos , Drenagem , Epitopos , Escherichia coli
13.
Viruses ; 12(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121192

RESUMO

Vaccination is one of the most effective public health interventions of the 20th century. All vaccines can be classified into different types, such as vaccines against infectious diseases, anticancer vaccines and vaccines against autoimmune diseases. In recent decades, recombinant technologies have enabled the design of experimental vaccines against a wide range of diseases using plant viruses and virus-like particles as central elements to stimulate protective and long-lasting immune responses. The analysis of recent publications shows that at least 97 experimental vaccines have been constructed based on plant viruses, including 71 vaccines against infectious agents, 16 anticancer vaccines and 10 therapeutic vaccines against autoimmune disorders. Several plant viruses have already been used for the development of vaccine platforms and have been tested in human and veterinary studies, suggesting that plant virus-based vaccines will be introduced into clinical and veterinary practice in the near future.


Assuntos
Vírus de Plantas/genética , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Controle de Doenças Transmissíveis , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/imunologia , Engenharia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Neoplasias/imunologia , Neoplasias/terapia , Vírus de Plantas/ultraestrutura , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vacinologia/métodos , Vacinologia/tendências , Vírion
14.
J Allergy Clin Immunol ; 145(4): 1240-1253.e3, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866435

RESUMO

BACKGROUND: Peanut allergy is a severe and increasingly frequent disease with high medical, psychosocial, and economic burden for affected patients and wider society. A causal, safe, and effective therapy is not yet available. OBJECTIVE: We sought to develop an immunogenic, protective, and nonreactogenic vaccine candidate against peanut allergy based on virus-like particles (VLPs) coupled to single peanut allergens. METHODS: To generate vaccine candidates, extracts of roasted peanut (Ara R) or the single allergens Ara h 1 or Ara h 2 were coupled to immunologically optimized Cucumber Mosaic Virus-derived VLPs (CuMVtt). BALB/c mice were sensitized intraperitoneally with peanut extract absorbed to alum. Immunotherapy consisted of a single subcutaneous injection of CuMVtt coupled to Ara R, Ara h 1, or Ara h 2. RESULTS: The vaccines CuMVtt-Ara R, CuMVtt-Ara h 1, and CuMVtt-Ara h 2 protected peanut-sensitized mice against anaphylaxis after intravenous challenge with the whole peanut extract. Vaccines did not cause allergic reactions in sensitized mice. CuMVtt-Ara h 1 was able to induce specific IgG antibodies, diminished local reactions after skin prick tests, and reduced the infiltration of the gastrointestinal tract by eosinophils and mast cells after oral challenge with peanut. The ability of CuMVtt-Ara h 1 to protect against challenge with the whole extract was mediated by IgG, as shown via passive IgG transfer. FcγRIIb was required for protection, indicating that immune complexes with single allergens were able to block the allergic response against the whole extract, consisting of a complex allergen mixture. CONCLUSIONS: Our data suggest that vaccination using single peanut allergens displayed on CuMVtt may represent a novel therapy against peanut allergy with a favorable safety profile.


Assuntos
Antígenos de Plantas/genética , Dessensibilização Imunológica/métodos , Proteínas de Membrana/genética , Hipersensibilidade a Amendoim/terapia , Proteínas de Plantas/genética , Vacinas/genética , Vírion/genética , Animais , Antígenos de Plantas/imunologia , Arachis/genética , Cucumovirus/genética , Engenharia Genética , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina E/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/imunologia , Receptores de IgG/metabolismo , Vacinas/imunologia , Vírion/imunologia
15.
Adv Drug Deliv Rev ; 145: 119-129, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30172923

RESUMO

In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.


Assuntos
Vírus de Plantas , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Animais , Humanos
16.
Methods Mol Biol ; 1776: 19-34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869232

RESUMO

Plant virus-like particles (VLPs) structurally resemble their progenitor viruses, but are noninfectious due to absence of viral nucleic acids. Since the 1980s, VLPs have been actively studied with the aim of constructing different nanomaterials, including immunologically active carriers for peptides and whole proteins and proteinaceous shells for the packaging of different ligands.The technological developments using VLPs require large amounts of purified particles. Here, we describe the laboratory process for isolation and purification of two unmodified plant VLPs, derived from two sobemoviruses, cocksfoot mottle virus (CfMV) and rice yellow mottle virus (RYMV), which is based on cultivation of recombinant Escherichia coli cells, VLP precipitation from bacterial extracts and ultracentrifugation. The suggested purification scheme allows the production of 4-45 mg of purified sobemoviral VLPs from a 1 l bacterial culture, depending on the required purity level. Additionally, we provide short protocols for VLP characterization using SDS-PAGE, agarose gel electrophoresis, ultraviolet and mass spectrometry, dynamic light scattering, and electron microscopy.


Assuntos
Vírus de Plantas/isolamento & purificação , Escherichia coli/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
18.
NPJ Vaccines ; 2: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263885

RESUMO

Monoclonal antibodies are widely used to treat non-infectious conditions but are costly. Vaccines could offer a cost-effective alternative but have been limited by sub-optimal T-cell stimulation and/or weak vaccine responses in recipients, for example, in elderly patients. We have previously shown that the repetitive structure of virus-like-particles (VLPs) can effectively bypass self-tolerance in therapeutic vaccines. Their efficacy could be increased even further by the incorporation of an epitope stimulating T cell help. However, the self-assembly and stability of VLPs from envelope monomer proteins is sensitive to geometry, rendering the incorporation of foreign epitopes difficult. We here show that it is possible to engineer VLPs derived from a non human-pathogenic plant virus to incorporate a powerful T-cell-stimulatory epitope derived from Tetanus toxoid. These VLPs (termed CMVTT) retain self-assembly as well as long-term stability. Since Th cell memory to Tetanus is near universal in humans, CMVTT-based vaccines can deliver robust antibody-responses even under limiting conditions. By way of proof of concept, we tested a range of such vaccines against chronic inflammatory conditions (model: psoriasis, antigen: interleukin-17), neurodegenerative (Alzheimer's, ß-amyloid), and allergic disease (cat allergy, Fel-d1), respectively. Vaccine responses were uniformly strong, selective, efficient in vivo, observed even in old mice, and employing low vaccine doses. In addition, randomly ascertained human blood cells were reactive to CMVTT-VLPs, confirming recognition of the incorporated Tetanus epitope. The CMVTT-VLP platform is adaptable to almost any antigen and its features and performance are ideally suited for the design of vaccines delivering enhanced responsiveness in aging populations.

19.
Antibiotics (Basel) ; 6(3)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892001

RESUMO

Milbemycins are macrolide antibiotics with a broad spectrum of nematocidal, insecticidal, and acaricidal activity. To obtain milbemycin A3/A4 derivatives suitable for chemical conjugation to protein carriers (milbemycin haptens), succinate linker and a novel 17-atom-long linker containing a terminal carboxylic acid group were attached to the milbemycin core in a protecting group-free synthesis. The obtained milbemycin A3/A4 derivatives were coupled to Potato virus Y-like nanoparticles by the activated ester method. The reaction products were characterized and used in mice immunization experiments. It was found that the mice developed weak specific immune responses toward all tested milbemycin haptens.

20.
Mol Biotechnol ; 57(11-12): 982-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346833

RESUMO

Virus-like particles (VLPs) are multisubunit self-assembly competent protein structures with identical or highly related overall structure to their corresponding native viruses. To construct a new filamentous VLP carrier, the coat protein (CP) gene from potato virus M (PVM) was amplified from infected potato plants, cloned, and expressed in Escherichia coli cells. As demonstrated by electron microscopy analysis, the PVM CP self-assembles into filamentous PVM-like particles, which are mostly 100-300 nm in length. Adding short Gly-Ser peptide at the C-terminus of the PVM, CP formed short VLPs, whereas peptide and protein A Z-domain fusions at the CP N-terminus retained its ability to form typical PVM VLPs. The PVM-derived VLP carrier accommodates up to 78 amino acid-long foreign sequences on its surface and can be produced in technologically significant amounts. PVM-like particles are stable at physiological conditions and also, apparently do not become disassembled in high salt and high pH solutions as well as in the presence of EDTA or reducing agents. Despite partial proteolytic processing of doubled Z-domain fused to PVM VLPs, the rabbit IgGs specifically bind to the particles, which demonstrates the functional activity and surface location of the Z-domain in the PVM VLP structure. Therefore, PVM VLPs may be recognized as powerful structural blocks for new human-made nanomaterials.


Assuntos
Carlavirus/genética , Genoma Viral , Nanopartículas/virologia , Vacinas de Partículas Semelhantes a Vírus/química , Animais , Carlavirus/isolamento & purificação , Carlavirus/fisiologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Imunoglobulina G/sangue , Imunoglobulina G/química , Coelhos , Solanum tuberosum/virologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA