RESUMO
The quick-to-court (qtc) gene is expressed in both males and females but affects only the mating behavior of males, probably due to the different composition of isoforms between the sexes. We tested this hypothesis and examined the sex-specific expression of qtc transcripts in the tissues of male and female Oregon-R flies. It was found that some qtc transcripts, such as qtc-RM and qtc-RN, are testis-specific, while others like qtc-RH are found in ovaries but absent in testes. No sex-specific transcripts were identified in the brain, suggesting further investigation into specific brain structures may be needed. There is likely a complex regulation of qtc gene expression, which is potentially influenced by various factors in different tissues.
RESUMO
The influence of microalgae on the formation of associated prokaryotic assemblages in halophilic microbial communities is currently underestimated. The aim of this study was to characterize shifts in prokaryotic assemblages of halophilic microalgae upon their transition to laboratory cultivation. Monoalgal cultures belonging to the classes Chlorodendrophyceae, Bacillariophyceae, Trebouxiophyceae, and Chlorophyceae were isolated from habitats with intermediate salinity, about 100 g/L, nearby Elton Lake (Russia). Significant changes were revealed in the structure of algae-associated prokaryotic assemblages, indicating that microalgae supported sufficiently diverse and even communities of prokaryotes. Despite some similarities in their prokaryotic assemblages, taxon-specific complexes of dominant genera were identified for each microalga species. These complexes were most different among Alphaproteobacteria, likely due to their close association with microalgae. Other taxon-specific bacteria included members of phylum Verrucomicrobiota (Coraliomargarita in assemblages of Navicula sp.) and class Gammaproteobacteria (Salinispirillum in microbiomes of A. gracilis). After numerous washings of algal cells, only alphaproteobacteria Marivibrio remained in all assemblages of T. indica, likely due to a firm attachment to the microalgae cells. Our results may be useful for further efforts to develop technologies applied for industrial cultivation of halophilic microalgae and for developing approaches to obtain new prokaryotes with a microalgae-associated lifestyle.
RESUMO
A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.
Assuntos
Achromobacter , Cobre , Glicina , Glifosato , Medicago sativa , Rizosfera , Glicina/análogos & derivados , Glicina/metabolismo , Cobre/metabolismo , Achromobacter/genética , Achromobacter/metabolismo , Achromobacter/classificação , Achromobacter/efeitos dos fármacos , Medicago sativa/microbiologia , Filogenia , Genoma Bacteriano , Microbiologia do Solo , Raízes de Plantas/microbiologia , Genômica , Biodegradação AmbientalRESUMO
Centrohelids (Haptista: Centroplasthelida) are axopodial protists with a remarkable diversity of external siliceous scale morphologies. It is believed that the last common ancestor of centrohelids had a double layer of siliceous scales composed of plate scales closer to a cell surface and spine scales radiating outwards. The characteristic morphotype of spine scales with a heart-shaped base was once believed to be a unique feature of the genus Choanocystis, as it was defined by Siemensma and Roijackers (1988). Further research revealed that this morphology is present in different and sometimes distantly related lineages: Ozanamiidae, Meringosphaeridae, and Marophryidae. Here, we report the fourth clade, Pterocystidae, which is also revealed to contain representatives having this phenotype. Cernunnos gen. nov. is erected here to place Cernunnos uralica sp. nov., Cernunnos arctica sp. nov., Cernunnos america sp. nov., and Cernunnos antarctica Tikhonenkov et Mylnikov, 2010, Gerasimova comb. nov. C. uralica was studied with scanning electron microscopy and SSU rDNA sequencing. Molecular phylogenetic analysis placed it into marine environmental clade P within Pterocystida. The ubiquity of spine scales with heart-shaped bases could be an example of parallel evolution, but taking into account the considerable similarity it is likely an ancestral trait, acquired from the last common ancestor of centrohelids.
Assuntos
Eucariotos , Filogenia , Microscopia Eletrônica de Varredura , DNA Ribossômico/genética , Regiões AntárticasRESUMO
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Assuntos
Acanthamoeba castellanii/microbiologia , Salmonella typhimurium/genética , Virulência/genética , Animais , Proteínas de Bactérias/genética , Ecossistema , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Mamíferos/microbiologiaRESUMO
Salmonella enterica is an ubiquitous pathogen throughout the world causing gastroenteritis in humans and animals. Survival of pathogenic bacteria in the external environment may be associated with the ability to overcome the stress caused by starvation. The bacterial response to starvation is well understood in laboratory cultures with a sufficiently high cell density. However, bacterial populations often have a small size when facing this challenge in natural biotopes. The aim of this work was to find out if there are differences in the transcriptomes of S. enterica depending on the factor of cell density during starvation. Here we present transcriptome data of Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S grown in carbon rich or carbon deficient medium with high or low cell density. These data will help identify genes involved in adaptation of low-density bacterial populations to starvation conditions.
RESUMO
In enteric bacteria, DNA supercoiling is highly responsive to environmental conditions. Host specific features of environment serve as cues for the expression of genes required for colonization of host niches via changing supercoiling [1]. It has been shown that substitution at position 87 of GyrA of Salmonella enterica str. SL1344 influences global supercoiling and results in an altered transcriptome with increased expression of stress response pathways [2]. Aminocoumarin antibiotics, such as novobiocin, can be used to relax supercoiling and alter the expression of supercoiling-sensitive genes. Meanwhile, Salmonella enterica demonstrates a significant resistance to this antibiotic and relatively small variability of supercoiling in response to the growth phase, osmotic pressure, and novobiocin treatment. Here we present for the first time transcriptome data of Salmonella enterica subsp. Enterica serovar Typhimurium str. 14028S grown in the presence of novobiocin. These data will help identify genes involved in novobiocin resistance and adaptation processes associated with torsion perturbations in S. enterica. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP239815) and have been assigned BioProject accession PRJNA599397.
RESUMO
Plant growth-promoting rhizobacteria (PGPR) improve plant productivity and stress resistance. The mechanisms involved in plant-microbe interactions include the modulation of plant hormone status. The Novosphingobium sp. strain P6W was previously described as the bacterium capable of abscisic acid (ABA) degradation, and its inoculation decreased ABA concentrations in planta. The metabolic pathway for the ABA degradation in bacteria is still unknown. Here we present transcriptome data of Novosphingobium sp. P6W grown in the medium supplemented with ABA or fructose as the carbon source. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP189498) and have been assigned BioProject accession PRJNA529223.
RESUMO
Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.
Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/genética , Microbiota , Paramecium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , FilogeniaRESUMO
OBJECTIVE: Recently, a significant association between dental caries and the severity of bronchial asthma in children has been revealed. This finding indicates a possible relationship between the oral microbiome and the pathogenesis of asthma. The purpose of our study was to estimate differences in the dental plaque microbiota of asthmatic children with and without dental caries by 16S rDNA sequencing. MATERIAL AND METHODS: Dental plaque samples were obtained with a spoon excavator from the occlusal surface of one deciduous tooth (the second mandibular left molar in caries-free children and the most affected tooth in caries-affected children). Total DNA was extracted from dental plaque. DNA libraries were analysed by 16S rRNA gene sequencing on the MiSeq (Illumina) platform. RESULTS: There were no significant differences in the composition of bacterial communities from both caries-affected and caries-free children with asthma. The "caries-enriched" genus was Veillonella (Veillonellaceae, Selenomonadales, Negativicutes). Relative abundance of Neisseria was significantly higher in caries-free children with asthma (p < 0.05). CONCLUSIONS: The most significant difference in compared bacterial communities was a higher relative abundance of Veillonella in caries-affected plaques that suggests its involvement in pathogenesis of caries. Potential respiratory pathogens are present in oral cavity of both caries-affected and caries-free asthmatic children.