Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Life Sci Space Res (Amst) ; 41: 210-217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670649

RESUMO

In addition to the continuous exposure to cosmic rays, astronauts in space are occasionally exposed to Solar Particle Events (SPE), which involve less energetic particles but can deliver much higher doses. The latter can exceed several Gy in a few hours for the most intense SPEs, for which non-stochastic effects are thus a major concern. To identify adequate shielding conditions that would allow respecting the dose limits established by the various space agencies, the absorbed dose in the considered organ/tissue must be multiplied by the corresponding Relative Biological Effectiveness (RBE), which is a complex quantity depending on several factors including particle type and energy, considered biological effect, level of effect (and thus absorbed dose), etc. While in several studies only the particle-type dependence of RBE is taken into account, in this work we developed and applied a new approach where, thanks to an interface between the FLUKA Monte Carlo transport code and the BIANCA biophysical model, the RBE dependence on particle energy and absorbed dose was also considered. Furthermore, we included in the considered SPE spectra primary particles heavier than protons, which in many studies are neglected. This approach was then applied to the October 2003 SPE (the most intense SPE of solar cycle 23, also known as "Halloween event") and the January 2005 event, which was characterized by a lower fluence but a harder spectrum, i.e., with higher-energy particles. The calculation outcomes were then discussed and compared with the current dose limits established for skin and blood forming organs in case of 30-days missions. This work showed that the BIANCA model, if interfaced to a radiation transport code, can be used to calculate the RBE values associated to Solar Particle Events. More generally, this work emphasizes the importance of taking into account the RBE dependence on particle energy and dose when calculating equivalent doses.


Assuntos
Radiação Cósmica , Eficiência Biológica Relativa , Atividade Solar , Radiação Cósmica/efeitos adversos , Humanos , Voo Espacial , Método de Monte Carlo , Astronautas , Doses de Radiação
2.
Phys Med Biol ; 66(19)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34507306

RESUMO

While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended to4He-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-like4He-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon. Very good agreement between simulations and data was obtained, showing that BIANCA can now be used to predict RBE following irradiation with all ion types that are currently used, or will be used soon, for hadrontherapy. Thanks to the development of a reference simulation database describing V79 cell survival for ion and photon irradiation, these predictions can be cell-type specific because analogous databases can be produced, in principle, for any cell line. Furthermore, survival data on CHO cells irradiated by a He-3 beam were reproduced to compare the biophysical properties of He-4 and He-3 beams, which is currently an open question. This comparison showed that, at the same depth, He-4 beams tend to have a higher RBE with respect to He-3 beams, and that this difference is also modulated by the considered physical dose, as well as the cell radiosensitivity. However, at least for the considered cases, no significant difference was found for the ratio between the RBE-weighted dose in the SOBP and that in the entrance plateau.


Assuntos
Neoplasias , Terapia com Prótons , Animais , Cricetinae , Cricetulus , Humanos , Neoplasias/radioterapia , Prótons , Eficiência Biológica Relativa
3.
Front Psychol ; 11: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063874

RESUMO

One of the top challenges in education and neuroscience consists in translating laboratory results into strategies to improve learning and memory in teaching environments. In that sense, during the last two decades, researchers have discovered specific temporal windows around learning, during which the intervention with some experiences induces modulatory effects on the formation and/or persistence of memory. Based on these results, the aim of the present study was to design a specific strategy to improve the memory of students in a high-school scenario, by assessing the effect of a novel situation experienced close to learning. We found that the long-term memory about a geometrical figure was more precise in the group of students that faced a novel situation 1 h before or after learning the figure than the control group of students who did not face the novelty. This enhancement was probably triggered by processes acting on memory formation mechanisms that remained evident 45 days after learning, indicating that the improvement was sustained over time. In addition, our results showed that novelty no longer improved the memory if it was experienced 4 h before or after learning. However, far beyond this window of efficacy, when it was faced around 10 h after learning, the novel experience improved the memory persistence tested 7 days later. In summary, our findings characterized different temporal windows of the effectiveness of novelty acting on memory processing, providing a simple and inexpensive strategy that could be used to improve memory formation and persistence in high-school students.

4.
Phys Med Biol ; 64(21): 215008, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31569085

RESUMO

In the framework of RBE modelling for hadron therapy, the BIANCA biophysical model was extended to O-ions and was used to construct a radiobiological database describing the survival of V79 cells as a function of ion type (1 ⩽ Z ⩽ 8) and energy. This database allowed performing RBE predictions in very good agreement with experimental data. A method was then developed to construct analogous databases for different cell lines, starting from the V79 database as a reference. Following interface to the FLUKA Monte Carlo radiation transport code, BIANCA was then applied for the first time to predict cell survival in a typical patient treatment scenario, consisting of two opposing fields of range-equivalent protons or C-ions. The model predictions were found to be in good agreement with CHO cell survival data obtained at the Heidelberg ion-beam therapy (HIT) centre, as well as predictions performed by the local effect model (version LEM IV). This work shows that BIANCA can be used to predict cell survival and RBE not only for V79 and AG01522 cells, as shown previously, but also, in principle, for any cell line of interest. Furthermore, following interface to a transport code like FLUKA, BIANCA can provide predictions of 3D biological dose distributions for hadron therapy treatments, thus laying the foundations for future applications in clinics.


Assuntos
Benchmarking , Partículas Elementares/uso terapêutico , Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Humanos , Eficiência Biológica Relativa
5.
Radiat Res ; 191(1): 76-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407901

RESUMO

Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.


Assuntos
Dano ao DNA , Simulação por Computador , Reparo do DNA , Transferência Linear de Energia , Modelos Teóricos , Método de Monte Carlo
6.
NPJ Sci Learn ; 3: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631480

RESUMO

The influence of a given event on long-term memory formation of another one has been a relevant topic of study in the neuroscience field in recent years. Students at school learn contents which are usually tested in exam format. However, exam elevates the arousal state of the students acting as a mild stressor that could influence another memory formation ongoing process. Thus, in this study we examine in high school students the effect of exams on long-term retention of unrelated information, learned at different times before or after the exams. Our results show that exams are not innocuous and that they could improve or reduce the retention of temporarily associated content. These effects did not show gender differences. Our findings should alert teachers about the side effects of exams on the learning of other content within the same school day.

7.
Radiat Prot Dosimetry ; 166(1-4): 369-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26246584

RESUMO

An innovative molecule, GdBLDL, for boron neutron capture therapy (BNCT) has been developed and its effectiveness as a BNCT carrier is currently under evaluation using in vivo experiments on small animal tumour models. The molecule contains both (10)B (the most commonly used NCT agent) and (157)Gd nuclei. (157)Gd is the second most studied element to perform NCT, mainly thanks to its high cross section for the capture of low-energy neutrons. The main drawback of (157)Gd neutron capture reaction is the very short range and low-energy secondary charged particles (Auger electrons), which requires (157)Gd to be very close to the cellular DNA to have an appreciable biological effect. Treatment doses were calculated by Monte Carlo simulations to ensure the optimised tumour irradiation and the sparing of the healthy organs of the irradiated animals. The enhancement of the absorbed dose due to the simultaneous presence of (10)B and (157)Gd in the experimental set-up was calculated and the advantage introduced by the presence of (157)Gd was discussed.


Assuntos
Boro/uso terapêutico , Gadolínio/uso terapêutico , Neoplasias Mamárias Animais/radioterapia , Método de Monte Carlo , Terapia por Captura de Nêutron , Planejamento da Radioterapia Assistida por Computador , Animais , Simulação por Computador , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Radiometria/métodos , Dosagem Radioterapêutica
8.
Appl Radiat Isot ; 106: 226-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26256647

RESUMO

The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones.


Assuntos
Terapia por Captura de Nêutron de Boro , Adesão Celular/efeitos da radiação , Raios gama , Neoplasias/radioterapia , Nêutrons , Animais , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias/patologia , Ratos
9.
Radiat Environ Biophys ; 54(3): 305-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956821

RESUMO

Some open questions on the mechanisms underlying radiation-induced cell death were addressed by a biophysical model, focusing on DNA damage clustering and its consequences. DNA "cluster lesions" (CLs) were assumed to produce independent chromosome fragments that, if created within a micrometer-scale threshold distance (d), can lead to chromosome aberrations following mis-rejoining; in turn, certain aberrations (dicentrics, rings and large deletions) were assumed to lead to clonogenic cell death. The CL yield and d were the only adjustable parameters. The model, implemented as a Monte Carlo code called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), provided simulated survival curves that were directly compared with experimental data on human and hamster cells exposed to photons, protons, α-particles and heavier ions including carbon and iron. d = 5 µm, independent of radiation quality, and CL yields in the range ~2-20 CLs Gy(-1) cell(-1), depending on particle type and energy, led to good agreement between simulations and data. This supports the hypothesis of a pivotal role of DNA cluster damage at sub-micrometric scale, modulated by chromosome fragment mis-rejoining at micrometric scale. To investigate the features of such critical damage, the CL yields were compared with experimental or theoretical yields of DNA fragments of different sizes, focusing on the base-pair scale (related to the so-called local clustering), the kbp scale ("regional clustering") and the Mbp scale, corresponding to chromatin loops. Interestingly, the CL yields showed better agreement with kbp fragments rather than bp fragments or Mbp fragments; this suggests that also regional clustering, in addition to other clustering levels, may play an important role, possibly due to its relationship with nucleosome organization in the chromatin fiber.


Assuntos
Morte Celular/efeitos da radiação , Dano ao DNA , Modelos Biológicos , Animais , Fenômenos Biofísicos , Sobrevivência Celular/efeitos da radiação , Aberrações Cromossômicas , Simulação por Computador , Cricetinae , DNA/química , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Humanos
10.
Radiat Prot Dosimetry ; 166(1-4): 75-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25877543

RESUMO

The role played by DNA cluster damage and chromosome aberrations in radiation-induced cell killing was investigated, assuming that certain chromosome aberrations (dicentrics, rings and large deletions, or 'lethal aberrations') lead to clonogenic inactivation and that chromosome aberrations are due to micrometre-scale rejoining of chromosome fragments derived from DNA cluster lesions (CLs). The CL yield and the threshold distance governing fragment rejoining were left as model parameters. The model, implemented as a Monte Carlo code called BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations), provided simulated survival curves that were compared with survival data on AG1522 and V79 cells exposed to different radiation types, including heavy ions. The agreement between simulation outcomes and experimental data suggests that lethal aberrations are likely to play an important role in cell killing not only for AG1522 cells exposed to X rays, as already reported by others, but also for other radiation types and other cells. Furthermore, the results are consistent with the hypothesis that the critical DNA lesions leading to cell death and chromosome aberrations are double-strand break clusters (possibly involving the ∼1000-10 000 bp scale) and that the effects of such clusters are modulated by micrometre-scale proximity effects during DNA damage processing.


Assuntos
Sobrevivência Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Simulação por Computador , Dano ao DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Pulmão/efeitos da radiação , Modelos Teóricos , Animais , Células Cultivadas , Cricetinae , Cricetulus , Fibroblastos/citologia , Humanos , Transferência Linear de Energia/efeitos da radiação , Pulmão/citologia , Método de Monte Carlo , Doses de Radiação , Raios X
11.
Appl Radiat Isot ; 69(12): 1745-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21481595

RESUMO

In parallel to boron measurements and animal studies, investigations on radiation-induced cell death are also in progress in Pavia, with the aim of better characterisation of the effects of a BNCT treatment down to the cellular level. Such studies are being carried out not only experimentally but also theoretically, based on a mechanistic model and a Monte Carlo code. Such model assumes that: (1) only clustered DNA strand breaks can lead to chromosome aberrations; (2) only chromosome fragments within a certain threshold distance can undergo misrejoining; (3) the so-called "lethal aberrations" (dicentrics, rings and large deletions) lead to cell death. After applying the model to normal cells exposed to monochromatic fields of different radiation types, the irradiation section of the code was purposely extended to mimic the cell exposure to a mixed radiation field produced by the (10)B(n,α) (7)Li reaction, which gives rise to alpha particles and Li ions of short range and high biological effectiveness, and by the (14)N(n,p)(14)C reaction, which produces 0.58 MeV protons. Very good agreement between model predictions and literature data was found for human and animal cells exposed to X- or gamma-rays, protons and alpha particles, thus allowing to validate the model for cell death induced by monochromatic radiation fields. The model predictions showed good agreement also with experimental data obtained by our group exposing DHD cells to thermal neutrons in the TRIGA Mark II reactor of the University of Pavia; this allowed to validate the model also for a BNCT exposure scenario, providing a useful predictive tool to bridge the gap between irradiation and cell death.


Assuntos
Terapia por Captura de Nêutron de Boro , Morte Celular , Método de Monte Carlo , Animais , Ratos
12.
Appl Radiat Isot ; 69(12): 1842-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21459587

RESUMO

To test the efficacy of a new (10)B-vector compound, the B/Gd/LDL adduct synthesised at Torino University, in vivo irradiations of murine tumours are in progress at the TRIGA Mark II reactor of the Pavia University. A localised B16 melanoma tumour is generated in C57BL/6 mice and subsequently infused with the adduct. During the irradiation, the mouse will be put in a shield to protect the whole body except the tumour in the back-neck area. To optimise the treatment set-up, MCNP simulations were performed. A very simplified mouse model was built using MCNP geometry capabilities, as well as the geometry of the shield made of 99% (10)B enriched boric acid. A hole in the shield is foreseen in correspondence of the back-neck region. Many configurations of the shield were tested in terms of neutron flux, dose distribution and mean induced activity in the tumour region and in the radiosensitive organs of the mouse. In the final set-up, up to five mice can be treated simultaneously in the reactor thermal column and the neutron fluence in the tumour region for 10 min of irradiation is of about 5×10(12) cm(-2).


Assuntos
Melanoma Experimental/radioterapia , Animais , Boro , Isótopos , Camundongos , Camundongos Endogâmicos C57BL
13.
Radiat Prot Dosimetry ; 143(2-4): 523-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21159746

RESUMO

Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy.


Assuntos
Apoptose/efeitos da radiação , Terapia por Captura de Nêutron de Boro/métodos , Aberrações Cromossômicas/efeitos da radiação , Modelos Biológicos , Animais , Simulação por Computador , Humanos , Nêutrons , Doses de Radiação
14.
Radiat Res ; 175(4): 452-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21133762

RESUMO

Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal-neutron irradiation of cells enriched with (10)B, which produces α particles and (7)Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron-enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron-loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation-induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.


Assuntos
Apoptose/efeitos da radiação , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Animais , Boro/farmacocinética , Boro/uso terapêutico , Linhagem Celular Tumoral , Isótopos/farmacocinética , Isótopos/uso terapêutico , Masculino , Taxa de Depuração Metabólica , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Ratos , Distribuição Tecidual , Resultado do Tratamento
15.
Appl Radiat Isot ; 69(2): 394-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145752

RESUMO

Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and α-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.


Assuntos
Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Boro/metabolismo , Neoplasias Pulmonares/radioterapia , Fenilalanina/análogos & derivados , Adenocarcinoma/metabolismo , Adenocarcinoma/radioterapia , Adenocarcinoma de Pulmão , Animais , Compostos de Boro/metabolismo , Modelos Animais de Doenças , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Fenilalanina/metabolismo , Fenilalanina/uso terapêutico , Ratos
16.
Appl Radiat Isot ; 67(7-8 Suppl): S210-3, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19406647

RESUMO

To test the possibility to apply boron neutron capture therapy (BNCT) to lung tumors, some rats are planned to be irradiated in the thermal column of the TRIGA reactor of the University of Pavia. Before the irradiation, lung metastases will be induced in BDIX rats, which will be subsequently infused with boronophenylalanine (BPA). During the irradiation, the rats will be positioned in a box designed to shield the whole animal except the thorax area. In order to optimize the irradiation set-up and to design a suitable shielding box, a set of calculations were performed with the MCNP Monte Carlo transport code. A rat model was constructed using the MCNP geometry capabilities and was positioned in a box with walls filled with lithium carbonate. A window was opened in front of the lung region. Different shapes of the holder and of the window were tested and analyzed in terms of the dose distribution obtained in the lungs and of the dose absorbed by the radiosensitive organs in the rat. The best configuration of the holder ensures an almost uniform thermal neutron flux inside the lungs (Phi(max)/Phi(min)=1.5), an irradiation time about 10 min long, to deliver at least 40 Gy(w) to the tumor, a mean lung dose of 5.9+/-0.4 Gy(w), and doses absorbed by all the other healthy tissues below the tolerance limits.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Terapia por Captura de Nêutron de Boro/estatística & dados numéricos , Neoplasias Pulmonares/radioterapia , Reatores Nucleares , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Animais , Itália , Neoplasias Pulmonares/secundário , Modelos Animais , Método de Monte Carlo , Imagens de Fantasmas , Proteção Radiológica/instrumentação , Ratos , Eficiência Biológica Relativa
17.
Radiat Res ; 171(4): 438-45, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19397444

RESUMO

We studied the DNA fragmentation induced in human fibroblasts by iron-ion beams of two different energies: 115 MeV/nucleon and 414 MeV/nucleon. Experimental data were obtained in the fragment size range 1-5700 kbp; Monte Carlo simulations were performed with the PARTRAC code; data analysis was also performed through the Generalized Broken Stick (GBS) model. The comparison between experimental and simulated data for the number of fragments produced in two different size ranges, 1-23 kbp and 23-5700 kbp, gives a satisfactory agreement for both radiation qualities. The Monte Carlo simulations also allow the counting of fragments outside the experimental range: The number of fragments smaller than 1 kbp is large for both beams, although with a strong difference between the two cases. As a consequence, we can compute different RBEs depending on the size range considered for the fragment counting. The PARTRAC evaluation takes into account fragments of all sizes, while the evaluation from the experimental data considers only the fragments in the range of 1-5700 kbp. When the PARTRAC evaluation is restricted to this range, the agreement between experimental and computed RBE values is again good. When fragments smaller than 1 kbp are also considered, the RBE increases considerably, since gamma rays produce a small number of such fragments. The analysis performed with the GBS model proved to be quite sensitive to showing, with a phenomenological single parameter, variations in double-strand break (DSB) correlation.


Assuntos
Fragmentação do DNA , DNA/efeitos da radiação , Fibroblastos/efeitos da radiação , Íons , Ferro , Simulação por Computador , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Método de Monte Carlo , Doses de Radiação
18.
Radiat Prot Dosimetry ; 122(1-4): 244-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17142819

RESUMO

In the last 10 years evidence has accumulated on the so-called radiation-induced 'non-targeted effects' and in particular on bystander effects, consisting of damage induction in non-irradiated cells most likely following the release of soluble factors by the irradiated ones. These phenomena were observed for different biological endpoints, both lethal and non-lethal for the cell. Although the underlying mechanisms are largely unknown, it is now widely recognised that two types of cellular communication (i.e. via gap junctions and/or release of molecular messengers into the extracellular environment) play a pivotal role. Furthermore, the effects can be significantly modulated by parameters such as cell type and cell-cycle stage, cell density, time after irradiation etc. Theoretical models and simulation codes can be of help to improve our knowledge of the mechanisms, as well as to investigate the possible role of these effects in determining deviations from the linear relationship between dose and risk which is generally applied in radiation protection. In this paper three models, including an approach under development at the University of Pavia, will be presented in detail. The focus will be on the various adopted assumptions, together with their implications in terms of non-targeted radiobiological damage and, more generally, low-dose radiation risk. Comparisons with experimental data will also be discussed.


Assuntos
Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Modelos Biológicos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Animais , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação , Tolerância a Radiação/fisiologia , Tolerância a Radiação/efeitos da radiação
19.
Radiat Prot Dosimetry ; 122(1-4): 362-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17151013

RESUMO

Human exposure to space radiation implies two kinds of risk, both stochastic and deterministic. Shielding optimisation therefore represents a crucial goal for long-term missions, especially in deep space. In this context, the use of radiation transport codes coupled with anthropomorphic phantoms allows to simulate typical radiation exposures for astronauts behind different shielding, and to calculate doses to different organs. In this work, the FLUKA Monte Carlo code and two phantoms, a mathematical model and a voxel model, were used, taking the Galactic Cosmic Rays (GCR) spectra from the model of Badhwar and O'Neill. The time integral spectral proton fluence of the August 1972 Solar Particle Event (SPE) was represented by an exponential function. For each aluminium shield thickness, besides total doses the contributions from primary and secondary particles for different organs and tissues were calculated separately. More specifically, organ-averaged absorbed doses, dose equivalents and a form of 'biological dose', defined on the basis of initial (clustered) DNA damage, were calculated. As expected, the SPE doses dramatically decreased with increasing shielding, and doses in internal organs were lower than in skin. The contribution of secondary particles to SPE doses was almost negligible; however it is of note that, at high shielding (10 g cm(-2)), most of the secondaries are neutrons. GCR organ doses remained roughly constant with increasing Al shielding. In contrast to SPE results, for the case of cosmic rays, secondary particles accounted for a significant fraction of the total dose.


Assuntos
Radiação Cósmica/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Modelos Biológicos , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Astronautas , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação , Proteção Radiológica/instrumentação , Radiação Ionizante , Medição de Risco/métodos , Fatores de Risco
20.
Radiat Prot Dosimetry ; 122(1-4): 271-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17251249

RESUMO

Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.


Assuntos
Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Raios gama , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-8/metabolismo , Receptores de Interleucina-8/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Doses de Radiação , Tolerância a Radiação/fisiologia , Tolerância a Radiação/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA