Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Neurosci ; 44(4-5): 344-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35447627

RESUMO

Antenatal brain development during the final trimester of human pregnancy is a time when mature neurons become increasingly complex in morphology, through axonal and dendritic outgrowth, dendritic branching, and synaptogenesis, together with myelin production. Characterizing neuronal morphological development over time is of interest to developmental neuroscience and provides the framework to measure gray matter pathology in pregnancy compromise. Neuronal microstructure can be assessed with Golgi staining, which selectively stains a small percentage (1-3%) of neurons and their entire dendritic arbor. Advanced imaging processing and analysis tools can then be employed to quantitate neuronal cytoarchitecture. Traditional Golgi-staining protocols have been optimized, and commercial kits are readily available offering improved speed and sensitivity of Golgi staining to produce consistent results. Golgi-stained tissue is then visualized under light microscopy and image analysis may be completed with several software programs for morphological analysis of neurons, including freeware and commercial products. Each program requires optimization, whether semiautomated or automated, requiring different levels of investigator intervention and interpretation, which is a critical consideration for unbiased analysis. Detailed protocols for fetal ovine brain tissue are lacking, and therefore, we provide a step-by-step workflow of computer software analysis for morphometric quantification of Golgi-stained neurons. Here, we utilized the commonly applied FD Rapid GolgiStain kit (FD NeuroTechnologies) on ovine fetal brains collected at 127 days (0.85) of gestational age for the analysis of CA1 pyramidal neurons in the hippocampus. We describe the step-by-step protocol to retrieve neuronal morphometrics using Imaris imaging software to provide quantification of apical and basal dendrites for measures of dendrite length (µm), branch number, branch order, and Sholl analysis (intersections over radius). We also detail software add-ons for data retrieval of dendritic spines including the number of spines, spine density, and spine classification, which are critical indicators of synaptic function. The assessment of neuronal morphology in the developing brain using Rapid-Golgi and Imaris software is labor-intensive, particularly during the optimization period. The methodology described in this step-by-step description is novel, detailed, and aims to provide a reproducible, working protocol to quantify neuronal cytoarchitecture with simple descriptions that will save time for the next users of these commonly used techniques.


Assuntos
Dendritos , Neurônios , Animais , Feminino , Feto , Hipocampo/patologia , Humanos , Neurônios/patologia , Gravidez , Ovinos , Coloração e Rotulagem
2.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33871329

RESUMO

Membrane vesicles (MVs) are membrane-bound spherical nanostructures that prevail in all three domains of life. In Gram-negative bacteria, MVs are thought to be produced through blebbing of the outer membrane and are often referred to as outer membrane vesicles (OMVs). We have recently described another mechanism of MV formation in Pseudomonas aeruginosa that involves explosive cell-lysis events, which shatters cellular membranes into fragments that rapidly anneal into MVs. Interestingly, MVs are often observed within preparations of lytic bacteriophage, however the source of these MVs and their association with bacteriophage infection has not been explored. In this study we aimed to determine if MV formation is associated with lytic bacteriophage infection. Live super-resolution microscopy demonstrated that explosive cell lysis of Escherichia coli cells infected with either bacteriophage T4 or T7, resulted in the formation of MVs derived from shattered membrane fragments. Infection by either bacteriophage was also associated with the formation of membrane blebs on intact bacteria. TEM revealed multiple classes of MVs within phage lysates, consistent with multiple mechanisms of MV formation. These findings suggest that bacteriophage infection may be a major contributor to the abundance of bacterial MVs in nature.


Assuntos
Bacteriófagos/fisiologia , Membrana Celular/virologia , Escherichia coli/virologia , Vesículas Extracelulares/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vesículas Extracelulares/genética
3.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606022

RESUMO

Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.

4.
ACS Biomater Sci Eng ; 6(7): 3925-3932, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463326

RESUMO

Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution, while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ∼100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed and fabricated, and their bacteria-nanotopography interactions can be assessed in situ.


Assuntos
Nanotubos de Carbono , Odonatos , Animais , Bactérias , Escherichia coli , Hélio , Iluminação , Microscopia
5.
AAPS J ; 16(2): 269-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24431080

RESUMO

This study focuses on the co-engineering of salbutamol sulphate (SS), a common bronchodilator, and mannitol (MA), a mucolytic, as a potential combination therapy for mucus hypersecretion. This combination was chosen to have a synergic effect on the airways: the SS will act on the ß2-receptor for relaxation of smooth muscle and enhancement of ciliary beat frequency, whilst mannitol will improve the fluidity of mucus, consequently enhancing its clearance from the lung. A series of co-spray-dried samples, containing therapeutically relevant doses of SS and MA, were prepared. The physico-chemical characteristics of the formulations were evaluated in terms of size distribution, morphology, thermal and moisture response and aerosol performance. Additionally, the formulations were evaluated for their effects on cell viability and transport across air interface Calu-3 bronchial epithelial cells, contractibility effects on bronchial smooth muscle cells and cilia beat activity using ciliated nasal epithelial cells in vitro. The formulations demonstrated size distributions and aerosol performance suitable for inhalation therapy. Transport studies revealed that the MA component of the formulation enhanced penetration of SS across the complex mucus layer and the lung epithelia cells. Furthermore, the formulation in the ratios of SS 10(-6) and MA 10(-3) M gave a significant increase in cilia beat frequency whilst simultaneously preventing smooth muscle contraction associated with mannitol administration. These studies have established that co-spray dried combination formulations of MA and SS can be successfully prepared with limited toxicity, good aerosol performance and the ability to increase ciliary beat frequency for improving the mucociliary clearance in patients suffering from hyper-secretory diseases, whilst simultaneously acting on the underlying smooth muscle.


Assuntos
Albuterol/administração & dosagem , Pneumopatias/fisiopatologia , Manitol/administração & dosagem , Muco/metabolismo , Administração por Inalação , Albuterol/uso terapêutico , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Células Cultivadas , Cílios/fisiologia , Quimioterapia Combinada , Humanos , Pneumopatias/tratamento farmacológico , Manitol/uso terapêutico , Microscopia Eletrônica de Varredura , Músculo Liso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA