Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 878: 163005, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36965731

RESUMO

A novel approach for the treatment of VOCs (by using toluene used as a model compound) and the simultaneous conversion of carbon dioxide into valuable biomass has been investigated by using a combination of an activated sludge moving bed bioreactor (MBBR) and an algal photo-bioreactor (PBR). The first unit (MBBR, R1) promoted toluene removal up to 99.9 % for inlet load (IL) of 119.91 g m-3 d-1. The CO2 resulting from the degradation of toluene was then fixed in PBR (R2), with a fixation rate up to 95.8 %. The CO2 uptake was promoted by algae, with average production of algal biomass in Stage VI of 1.3 g L-1 d-1. In the contest of the circular economy, alternative sources of nutrients have been assessed, using synthetic urban wastewater (UWW) and dairy wastewater (DWW) for liquid renewal. The produced biomass with DWW showed a high lipid content, with a maximum productivity of 450.25 mg of lipids L-1 d-1. The solution proposed may be thus regarded as a sustainable and profitable strategy for VOCs treatment in a circular economy perspective.


Assuntos
Microalgas , Águas Residuárias , Reatores Biológicos , Biofilmes , Esgotos , Dióxido de Carbono/metabolismo , Biomassa , Biocombustíveis , Microalgas/metabolismo
2.
Sci Total Environ ; 792: 148479, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465066

RESUMO

This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Eletrólise , Gases de Efeito Estufa/análise , Águas Residuárias , Áreas Alagadas
3.
Sensors (Basel) ; 21(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375421

RESUMO

Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period from the original response curve, in collaboration with Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated. Laboratory analyses were performed with real odour samples collected in a complex industrial plant, using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the quality of the OCMM produced. The peak period in combination with the Artificial Neural Network (ANN) highlighted the best combination on the basis of high classification rates. The paper provides information to develop a solution to optimize the performance of IOMS.


Assuntos
Monitoramento Ambiental , Redes Neurais de Computação , Odorantes , Algoritmos , Eletrônica , Humanos
4.
Anaerobe ; 61: 102082, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31374328

RESUMO

This study attempted to characterize the microbial community and its role in anaerobic digestion of lipid. Reactors were fed semi-continuously with three related substrates, oil and its degradation intermediates (glycerol and long chain fatty acids (LCFAs)), with a stepwise increase in organic loading rate for 90 days. Microbial community analysis using next-generation sequencing (NGS) with the MiSeq Illumina platform revealed that Anaerolineaceae was the most dominant group of bacteria in all experiments, whereas Clostridium, Desulfovibrio, Rikenellaceae, and Treponema were observed characteristically in glycerol degradation and Leptospirales, Synergistaceae, Thermobaculaceae and Syntrophaceae were seen with high abundance in LCFA and oil mineralization. Furthermore, it was discovered that Methanosaeta was the most dominant archaea. The role of these microorganisms in the methane production from oil was estimated by comparing the microbial groups in the fermentation using three substrates, and a hypothetical pathway of the methane production was proposed.


Assuntos
Anaerobiose , Biodegradação Ambiental , Biotransformação , Metano/biossíntese , Microbiota , Águas Residuárias/microbiologia , Fermentação , Glicerol/metabolismo , Metagenoma , Metagenômica/métodos , Esgotos/microbiologia
5.
Sci Total Environ ; 692: 732-740, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539981

RESUMO

Pharmaceutical active compounds (PhACs) have been detected at significant concentrations in various natural and artificial aquatic environments. In this study, electro membrane bioreactor (eMBR) technology was used to treat simulated municipal wastewater containing widely-used pharmaceuticals namely amoxicillin (AMX), diclofenac (DCF) and carbamazepine (CBZ). The effects of varying current density on the removal of PhACs (AMX, DCF and CBZ) and conventional pollutants (chemical oxygen demand (COD), dissolved organic carbon (DOC), humic substances, ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N) and orthophosphate (PO4-P) species) were examined. High COD and DOC removal efficiencies (~100%) were obtained in all the experimental runs regardless of applied current density. In contrast, enhanced removal efficiencies for AMX, DCF and CBZ were achieved at high current densities. Membrane fouling rate in eMBR with respect to conventional MBR was reduced by 24, 44 and 45% at current densities of 0.3, 0.5 and 1.15 mA/cm2, respectively. The mechanism for pharmaceutical removal in this study proceeded by: (1) charge neutralization between negatively-charged pharmaceutical compounds and positive electro-generated aluminium coagulants to form larger particles and (2) size exclusion by membrane filtration.


Assuntos
Incrustação Biológica , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Amoxicilina/análise , Carbamazepina/análise , Diclofenaco/análise , Técnicas Eletroquímicas , Membranas Artificiais , Eliminação de Resíduos Líquidos/instrumentação
6.
J Hazard Mater ; 361: 367-373, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30265905

RESUMO

In this study, the viability of using electrocoagulation process as a method for pharmaceuticals removal from real municipal wastewater was demonstrated. Batch experimental runs were performed using a simple laboratory scale electrochemical reactor with aluminium and stainless steel as anode and cathode, respectively. Diclofenac (DCF), carbamazepine (CBZ) and amoxicillin (AMX) were selected as representative of pharmaceuticals frequently detected in the aquatic environment. The effects of varying experimental parameters namely current density (0.3, 0.5 1.15 and 1.8 mA cm-2), initial pharmaceutical concentration (0.01, 4 and 10 mg L-1), electrolysis duration (3, 6 and 19 h) and application mode (continuous vs. intermittent) on pharmaceutical removal efficiencies were evaluated. High pharmaceutical abatement was recorded at elevated current density and prolonged electrolysis duration due to additional electro-generated coagulant species in solution.


Assuntos
Eletrólise/métodos , Modelos Teóricos , Preparações Farmacêuticas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Floculação
7.
Membranes (Basel) ; 8(4)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469534

RESUMO

High operational cost due to membrane fouling propensity remains a major drawback for the widespread application of membrane bioreactor (MBR) technology. As a result, studies on membrane fouling mitigation through the application of integrated processes have been widely explored. In this work, the combined application of electrochemical processes and moving bed biofilm reactor (MBBR) technology within an MBR at laboratory scale was performed by applying an intermittent voltage of 3 V/cm to a reactor filled with 30% carriers. The treatment efficiency of the electro moving bed membrane bioreactor (eMB-MBR) technology in terms of ammonium nitrogen (NH4-N) and orthophosphate (PO4-P) removal significantly improved from 49.8% and 76.7% in the moving bed membrane bioreactor (MB-MBR) control system to 55% and 98.7% in the eMB-MBR, respectively. Additionally, concentrations of known fouling precursors and membrane fouling rate were noticeably lower in the eMB-MBR system as compared to the control system. Hence, this study successfully demonstrated an innovative and effective technology (i.e., eMB-MBR) to improve MBR performance in terms of both conventional contaminant removal and fouling mitigation.

8.
J Hazard Mater ; 341: 365-372, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802247

RESUMO

We measured bioaccessible lead (Pb) in simulated gastrointestinal fluids containing Pb-contaminated soil or dust from electronic waste (e-waste) recycling sites to assess the risk of Pb ingestion. The physiologically based extraction test (PBET) was used as in vitro bioaccessibility assay. Pb speciation was determined using X-ray absorption spectroscopy. The total Pb concentrations in dusts (n=8) and soils (n=4) were in the range of 1630-131,000 and 239-7800mg/kg, respectively. Metallic Pb, a common component of e-waste, was ubiquitous in the samples. We also found Pb adsorbed onto goethite and as oxides and carbonate, implying soil mixing and weathering influences. Pb phosphate and organic species were only found in the soil samples, suggesting that formation was soil-specific. We identified other Pb compounds in several samples, including Pb silicate, Pb chromate, and Pb(II) hydrogen phosphate. A correlation analysis indicated that metallic Pb decreased bioaccessibility in the stomach, while a Pb speciation analysis revealed a low bioaccessibility for Pb phosphates and high bioaccessibility for organic Pb species. The health risk based on bioaccessible Pb was estimated to be much lower than that of total Pb due to the lower concentrations.


Assuntos
Suco Gástrico/química , Secreções Intestinais/química , Chumbo/química , Poluentes do Solo/química , Disponibilidade Biológica , Poeira/análise , Resíduo Eletrônico , Monitoramento Ambiental , Chumbo/análise , Reciclagem , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X
9.
Chemosphere ; 164: 59-67, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27574815

RESUMO

Heavy metal removal is a significant task that protects our water resources. Fluidized-bed homogeneous granulation process (FBHGP) was used to treat nickel containing wastewaters by recovering nickel in the form of nickel carbonate hydroxide granules with low moisture content rather than soft sludge. This study investigated nickel removal and recovery through HFBGP by determining the effects of varying influent nickel concentrations, [CO32-: Ni2+] molar ratios, and pH of the precipitant. This was conducted in a continuous process using a laboratory scale fluidized-bed reactor that determined the effects driven by supersaturation. The best operating conditions that resulted in a 98.8% nickel removal and 97.8% granulation efficiency were 200 mg L-1 influent nickel concentration, 2.0 M R of [CO3-2:Ni+2], and 10.7 pH of precipitant. Based on SEM analysis, the granules formed have sizes between 0.50 mm and 0.15 mm. EDS results showed that the atomic percentages of nickel carbon, and hydrogen were ∼50%, ∼9-12%, and ∼35% respectively, representing the nickel carbonate compound. The XRD results showed the low symmetry of the granules formed that confirmed the characteristics of nullaginite mineral of Ni2(CO3)(OH)2.


Assuntos
Reatores Biológicos/microbiologia , Níquel/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Precipitação Química , Hidróxidos/análise , Modelos Teóricos , Níquel/química , Esgotos/química , Solubilidade , Águas Residuárias/química , Poluentes Químicos da Água/química
10.
J Hazard Mater ; 221-222: 139-46, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22542777

RESUMO

We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites.


Assuntos
Eletrônica , Metais/química , Reciclagem , Poluentes do Solo/química , Ásia , Poeira/análise , Metais/toxicidade , Filipinas , Controle de Qualidade , Poluentes do Solo/toxicidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA