Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1279667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928664

RESUMO

Prior research has indicated the feasibility of assessing growth-associated activity in bacterial colonies through the application of laser speckle imaging techniques. A subpixel correlation method was employed to identify variations in sequential laser speckle images, thereby facilitating the visualization of specific zones indicative of microbial growth within the colony. Such differentiation between active (growing) and inactive (non-growing) bacterial colonies holds considerable implications for medical applications, like bacterial response to certain drugs or antibiotics. The present study substantiates the capability of laser speckle imaging to categorize bacterial colonies as growing or non-growing, a parameter which nonvisible in colonies when observed under white light illumination.

3.
Front Microbiol ; 14: 1221134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455709

RESUMO

Rapid identification of effective antibiotic treatment is crucial for increasing patient survival and preventing the formation of new antibiotic-resistant bacteria due to preventative antibiotic use. Currently utilized "gold standard" methods require 16-24 h to determine the most appropriate antibiotic for the patient's treatment. The proposed technique of laser speckle imaging with subpixel correlation analysis allows for identifying dynamics and changes in the zone of inhibition, which are impossible to observe with classical methods. Furthermore, it obtains the resulting zone of inhibition diameter earlier than the disk diffusion method which is recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). These results could improve mathematical models of changes in the diameter of the zone of inhibition around the disc containing the antimicrobial agent, thereby speeding up and facilitating epidemiological analysis.

4.
Sci Rep ; 13(1): 2613, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788263

RESUMO

The microbial colony growth is driven by the activity of the cells located on the edges of the colony. However, this process is not visible unless specific staining or cross-sectioning of the colony is done. Speckle imaging technology is a non-invasive method that allows visualization of the zones of increased microbial activity within the colony. In this study, the laser speckle imaging technique was used to record the growth of the microbial colonies. This method was tested on three different microorganisms: Vibrio natriegens, Escherichia coli, and Staphylococcus aureus. The results showed that the speckle analysis system is not only able to record the growth of the microbial colony but also to visualize the microbial growth activity in different parts of the colony. The developed speckle imaging technique visualizes the zone of "the highest microbial activity" migrating from the center to the periphery of the colony. The results confirm the accuracy of the previous models of colony growth and provide algorithms for analysis of microbial activity within the colony.


Assuntos
Diagnóstico por Imagem , Escherichia coli , Contagem de Colônia Microbiana
5.
Biomed Opt Express ; 12(3): 1609-1620, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796376

RESUMO

In this study, an optical contactless laser speckle imaging technique for the early identification of bacterial colony-forming units was tested. The aim of this work is to compare the laser speckle imaging method for the early assessment of microbial activity with standard visual inspection under white light illumination. In presented research, the growth of Vibrio natriegens bacterial colonies on the solid medium was observed and analyzed. Both - visual examination under white light illumination and laser speckle correlation analysis were performed. Based on various experiments and comparisons with the theoretical Gompertz model, colony radius growth curves were obtained. It was shown that the Gompertz model can be used to describe both types of analysis. A comparison of the two methods shows that laser speckle contrast imaging, combined with signal processing, can detect colony growth earlier than standard CFU counting method under white light illumination.

6.
J Acoust Soc Am ; 122(5): 2661-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18189558

RESUMO

The spatial and temporal distribution of early reflections in an auditorium is considered important for sound perception. Previous studies presented measurement and analysis methods based on spherical microphone arrays and plane-wave decomposition that could provide information on the direction and time of arrival of early reflections. This paper presents recent results of room acoustics analysis based on a spherical microphone array, which employs high spherical harmonics order for improved spatial resolution, and a dual-radius spherical measurement array to avoid ill-conditioning at the null frequencies of the spherical Bessel function. Spatial-temporal analysis is performed to produce directional impulse responses, while analysis based on the windowed Fourier transform is employed to detect direction of arrival of individual reflections at selected frequencies. Experimental results of sound-field analysis in a real auditorium are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA