Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604018

RESUMO

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


Assuntos
DNA , Descoberta de Drogas , Inibidores Enzimáticos , N-Acetilglucosaminiltransferases , Bibliotecas de Moléculas Pequenas , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , DNA/química , DNA/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Difosfato de Uridina/metabolismo , Difosfato de Uridina/química
2.
ChemMedChem ; 18(8): e202300001, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36752318

RESUMO

ß-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.


Assuntos
Acetilglucosamina , Difosfato de Uridina , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sítios de Ligação , Uridina , N-Acetilglucosaminiltransferases/metabolismo
3.
Molecules ; 27(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335358

RESUMO

O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-ß-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.


Assuntos
N-Acetilglucosaminiltransferases , Processamento de Proteína Pós-Traducional , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Pesquisa , Relação Estrutura-Atividade
4.
Front Chem ; 9: 666122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937202

RESUMO

O-GlcNAcylation is an important post-translational and metabolic process in cells that must be carefully regulated. O-GlcNAc transferase (OGT) is ubiquitously present in cells and is the only enzyme that catalyzes the transfer of O-GlcNAc to proteins. OGT is a promising target in various pathologies such as cancer, immune system diseases, or nervous impairment. In our previous work we identified the 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives as promising compounds by a fragment-based drug design approach. Herein, we report the extension of this first series with several new fragments. As the most potent fragment, we identified 3b with an IC50 value of 116.0 µM. If compared with the most potent inhibitor of the first series, F20 (IC50 = 117.6 µM), we can conclude that the new fragments did not improve OGT inhibition remarkably. Therefore, F20 was used as the basis for the design of a series of compounds with the elongation toward the O-GlcNAc binding pocket as the free carboxylate allows easy conjugation. Compound 6b with an IC50 value of 144.5 µM showed the most potent OGT inhibition among the elongated compounds, but it loses inhibition potency when compared to the UDP mimetic F20. We therefore assume that the binding of the compounds in the O-GlcNAc binding pocket is likely not crucial for OGT inhibition. Furthermore, evaluation of the compounds with two different assays revealed that some inhibitors most likely interfere with the commercially available UDP-Glo™ glycosyltransferase assay, leading to false positive results. This observation calls for caution, when evaluating UDP mimetic as OGT inhibitors with the UDP-Glo™ glycosyltransferase assay, as misinterpretations can occur.

5.
Molecules ; 26(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669256

RESUMO

O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked ß-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity. The extent of this modification has sparked interest in the medical community to explore OGA and OGT as therapeutic targets, particularly in degenerative diseases. While some OGA inhibitors are already in phase 1 clinical trials for the treatment of Alzheimer's disease, OGT inhibitors still have a long way to go. Due to complex expression and instability, the discovery of potent OGT inhibitors is challenging. Over the years, the field has grappled with this problem, and scientists have developed a number of techniques and assays. In this review, we aim to highlight assays and techniques for OGT inhibitor discovery, evaluate their strength for the field, and give us direction for future bioassay methods.


Assuntos
Bioensaio/métodos , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Fenômenos Biofísicos , Química Click , Ligação Proteica
6.
Chembiochem ; 22(4): 666-671, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022805

RESUMO

O-GlcNAc transferase (OGT) is the only enzyme that catalyzes the post-translational modification of proteins at Ser/Thr with a single ß-N-acetylglucosamine (O-GlcNAcylation). Its activity has been associated with chronic diseases such as cancer, diabetes and neurodegenerative disease. Although numerous OGT substrates have been identified, its accepted substrate scope can still be refined. We report here an attempt to better define the peptide-recognition requirements of the OGT active site by using mRNA display, taking advantage of its extremely high throughput to assess the substrate potential of a library of all possible nonamer peptides. An antibody-based selection process is described here that is able to enrich an OGT substrate peptide from such a library, but with poor absolute recovery. Following four rounds of selection for O-GlcNAcylated peptides, sequencing revealed 14 peptides containing Ser/Thr, but these were shown by luminescence-coupled assays and peptide microarray not to be OGT substrates. By contrast, subsequent testing of an N-terminal tag approach showed exemplary recovery. Our approach demonstrates the power of genetically encoded libraries for selection of peptide substrates, even from a very low initial starting abundance and under suboptimal conditions, and emphasizes the need to consider the binding biases of antibodies and both C- and N-terminal tags in profiling peptide substrates by high-throughput display.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Fragmentos de Peptídeos/metabolismo , Análise Serial de Proteínas/métodos , RNA Mensageiro/metabolismo , Domínio Catalítico , Humanos , Técnicas In Vitro , Luminescência , N-Acetilglucosaminiltransferases/genética , RNA Mensageiro/genética , Especificidade por Substrato
7.
Chem Sci ; 11(15): 3868-3877, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-34122855

RESUMO

Cellulose nanofibrils (CNF) are renewable bio-based materials with high specific area, which makes them ideal candidates for multiple emerging applications including for instance on-demand drug release. However, in-depth chemical and structural characterization of the CNF surface chemistry is still an open challenge, especially for low weight percentage of functionalization. This currently prevents the development of efficient, cost-effective and reproducible green synthetic routes and thus the widespread development of targeted and responsive drug-delivery CNF carriers. We show in this work how we use dynamic nuclear polarization (DNP) to overcome the sensitivity limitation of conventional solid-state NMR and gain insight into the surface chemistry of drug-functionalized TEMPO-oxidized cellulose nanofibrils. The DNP enhanced-NMR data can report unambiguously on the presence of trace amounts of TEMPO moieties and depolymerized cellulosic units in the starting material, as well as coupling agents on the CNFs surface (used in the heterogeneous reaction). This enables a precise estimation of the drug loading while differentiating adsorption from covalent bonding (∼1 wt% in our case) as opposed to other analytical techniques such as elemental analysis and conductometric titration that can neither detect the presence of coupling agents, nor differentiate unambiguously between adsorption and grafting. The approach, which does not rely on the use of 13C/15N enriched compounds, will be key to further develop efficient surface chemistry routes and has direct implication for the development of drug delivery applications both in terms of safety and dosage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA