Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(4): 3755-3761, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743044

RESUMO

Novel materials for biomedical applications are in critical need of time. In the present work, the antibacterial properties of Co1-x Ni x Mg x Fe2O4 nanoparticles (NPs) are assessed by the disc diffusion method for the common pathogen, that is, Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Overnight grown bacterial cultures were individually lawn-cultured on nutrient agar plates. All samples of NP concentrations (2 mg/mL) were prepared in sterile water and dispensed by sonication. Sterile filter paper discs (1.0 mm) were saturated by the (doped CoFe2O4) NP solution and incubated at 37 ± 0.1 °C for 24 h. The NPs with a fine size of 30-70 nm of Co1-x Ni x Mg x Fe2O4 were achieved using the sol-gel method by doping CoFe2O4 initially with Ni and codoping with Mg, and their properties were studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared techniques. According to the results, Co0.5Ni0.25Mg0.25Fe2O4 NPs exhibited potent antibacterial activities against s. aureus having an inhibition zone of 6.5 mm and P. aeruginosa having an inhibition zone of 6 mm as that were examined. The result shows that the bacteriostatic properties of NPs are used for numerous applications such as hyperthermia, antibacterial treatments, and targeted drug delivery.

2.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676219

RESUMO

Lead-free ceramics are promising candidates for replacing lead-based piezoelectric materials such as lead-zirconate-titanate (PZT) if they can compete in dielectric and ferroelectric characteristics. In this work, for lead-free piezoelectric ceramic, 0.74(Bi0.5Na0.5TiO3)-0.26(SrTiO3) (BNT-ST26) and niobium-substituted (Nb-BNT-ST26) ceramics were synthesized by solid-state reactions. The evolution of niobium substitution to the perovskite phase structure of BNT-ST26 ceramics was confirmed by X-ray diffraction (XRD) analysis and Raman spectra. Electromechanical properties of Nb-BNT-ST26 ceramics initially increased with the addition of niobium up to 0.5% and decreased with a further increase in Nb content. Temperature-dependent dielectric curves showed that the depolarization temperature (Td) decreased below room temperature because of Nb substitution. The composition with 0.5% Nb yielded a maximum bipolar strain (Smax) of 0.265% and normalized strain of d33* ~ 576 pm/V under an electric field of 4.6 kV/mm at room temperature. At this critical concentration of 0.5% Nb, maximum saturation polarization of 26 µC/cm2 was achieved. The dielectric constant with temperature peaks became more diffused and the depolarization temperature decreased with the increasing Nb content. The study concludes that Nb-doped BNT-ST26 is an excellent material for high-temperature, stable, frequency-dependent, lead-free piezoelectric devices.

3.
ACS Omega ; 7(41): 36052-36069, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278059

RESUMO

Smart structures can help to resolve many issues related to conventional materials that are being used in different industries. Shape memory alloys (SMAs) are smart materials with better actuation response, vibration damping characteristics, and large strain recovery, making them good candidates due to their high strength and corrosion resistance for various engineering applications. The performance of fiber-reinforced polymer (FRP) composite materials that are replacing many conventional materials due to their good strength, stiffness, and lightweight potential especially in fuel-consuming industries such as aerospace and automotive, can further be improved by impregnation with SMAs. This review discusses the SMA-reinforced FRP composites, leading to shape memory hybrid composite materials, the issues and limitations in composite manufacturing, and their uses in different research arenas including impact and damping applications, seismic protection applications, crack closure applications, shape morphing applications, and self-deployable structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA