Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 158: 108713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688079

RESUMO

Boron doped diamond has been considered as a fouling-resistive electrode material for in vitro and in vivo detection of neurotransmitters. In this study, its performance in electrochemical detection of dopamine and serotonin in neuron cultivation media Neurobasal™ before and after cultivation of rat neurons was investigated. For differential pulse voltammetry the limits of detection in neat Neurobasal™ medium of 2 µM and 0.2 µM for dopamine and serotonin, respectively, were achieved on the polished surface, which is comparable with physiological values. On oxidized surface twofold higher values, but increased repeatabilities of the signals were obtained. However, in Neurobasal™ media with peptides-containing supplements necessary for cell cultivation, the voltammograms were notably worse shaped due to biofouling, especially in the medium isolated after neuron growth. In these complex media, the amperometric detection mode at +0.75 V (vs. Ag/AgCl) allowed to detect portion-wise additions of dopamine and serotonin (as low as 1-2 µM), mimicking neurotransmitter release from vesicles despite the lower sensitivity in comparison with neat NeurobasalTM. The results indicate substantial differences in detection on boron doped diamond electrode in the presence and absence of proteins, and the necessity of studies in real media for successful implementation to neuron-electrode interfaces.


Assuntos
Incrustação Biológica , Boro , Meios de Cultura , Diamante , Dopamina , Eletrodos , Neurônios , Serotonina , Serotonina/análise , Dopamina/análise , Boro/química , Diamante/química , Animais , Neurônios/citologia , Neurônios/metabolismo , Ratos , Incrustação Biológica/prevenção & controle , Meios de Cultura/química , Técnicas Eletroquímicas/métodos
2.
Environ Pollut ; 347: 123705, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442825

RESUMO

The ongoing challenge of water pollution by contaminants of emerging concern calls for more effective wastewater treatment to prevent harmful side effects to the environment and human health. To this end, this study explored for the first time the implementation of single-crystal boron-doped diamond (BDD) anodes in electrochemical wastewater treatment, which stand out from the conventional polycrystalline BDD morphologies widely reported in the literature. The single-crystal BDD presented a pure diamond (sp3) content, whereas the three other investigated polycrystalline BDD electrodes displayed various properties in terms of boron doping, sp3/sp2 content, microstructure, and roughness. The effects of other process conditions, such as applied current density and anolyte concentration, were simultaneously investigated using carbamazepine (CBZ) as a representative target pollutant. The Taguchi method was applied to elucidate the optimal operating conditions that maximised either (i) the CBZ degradation rate constant (enhanced through hydroxyl radicals (•OH)) or (ii) the proportion of sulfate radicals (SO4•-) with respect to •OH. The results showed that the single-crystal BDD significantly promoted •OH formation but also that the interactions between boron doping, current density and anolyte concentration determined the underlying degradation mechanisms. Therefore, this study demonstrated that characterising the BDD material and understanding its interactions with other process operating conditions prior to degradation experiments is a crucial step to attain the optimisation of any wastewater treatment application.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Boro/química , Oxirredução , Diamante/química , Poluentes Químicos da Água/química , Eletrodos , Purificação da Água/métodos
3.
Environ Sci (Camb) ; 10(3): 652-667, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38434174

RESUMO

Electrochemical wastewater treatment is a promising technique to remove recalcitrant pollutants from wastewater. However, the complexity of elucidating the underlying degradation mechanisms hinders its optimisation not only from a techno-economic perspective, as it is desirable to maximise removal efficiencies at low energy and chemical requirements, but also in environmental terms, as the generation of toxic by-products is an ongoing challenge. In this work, we propose a novel combined experimental and computational approach to (i) estimate the contribution of radical and non-radical mechanisms as well as their synergistic effects during electrochemical oxidation and (ii) identify the optimal conditions that promote specific degradation pathways. As a case study, the distribution of the degradation mechanisms involved in the removal of benzoic acid (BA) via boron-doped diamond (BDD) anodes was elucidated and analysed as a function of several operating parameters, i.e., the initial sulfate and nitrate content of the wastewater and the current applied. Subsequently, a multivariate optimisation study was conducted, where the influence of the electrode nature was investigated for two commercial BDD electrodes and a customised silver-decorated BDD electrode. Optimal conditions were identified for each degradation mechanism as well as for the overall BA degradation rate constant. BDD selection was found to be the most influential factor favouring any mechanism (i.e., 52-85% contribution), given that properties such as its boron doping and the presence of electrodeposited silver could dramatically affect the reactions taking place. In particular, decorating the BDD surface with silver microparticles significantly enhanced BA degradation via sulfate radicals, whereas direct oxidation, reactive oxygen species and radical synergistic effects were promoted when using a commercial BDD material with higher boron content and on a silicon substrate. Consequently, by simplifying the identification and quantification of underlying mechanisms, our approach facilitates the elucidation of the most suitable degradation route for a given electrochemical wastewater treatment together with its optimal operating conditions.

4.
ACS Appl Mater Interfaces ; 15(33): 39915-39925, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556596

RESUMO

Fabrication of patterned boron-doped diamond (BDD) in an inexpensive and straightforward way is required for a variety of practical applications, including the development of BDD-based electrochemical sensors. This work describes a simplified and novel bottom-up fabrication approach for BDD-based three-electrode sensor chips utilizing direct inkjet printing of diamond nanoparticles on silicon-based substrates. The whole seeding process, accomplished by a commercial research inkjet printer with piezo-driven drop-on-demand printheads, was systematically examined. Optimized and continuous inkjet-printed features were obtained with glycerol-based diamond ink (0.4% vol/wt), silicon substrates pretreated by exposure to oxygen plasma and subsequently to air, and applying a dot density of 750 drops (volume 9 pL) per inch. Next, the dried micropatterned substrate was subjected to a chemical vapor deposition step to grow uniform thin-film BDD, which satisfied the function of both working and counter electrodes. Silver was inkjet-printed to complete the sensor chip with a reference electrode. Scanning electron micrographs showed a closed BDD layer with a typical polycrystalline structure and sharp and well-defined edges. Very good homogeneity in diamond layer composition and a high boron content (∼2 × 1021 atoms cm-3) was confirmed by Raman spectroscopy. Important electrochemical characteristics, including the width of the potential window (2.5 V) and double-layer capacitance (27 µF cm-2), were evaluated by cyclic voltammetry. Fast electron transfer kinetics was recognized for the [Ru(NH3)6]3+/2+ redox marker due to the high doping level, while somewhat hindered kinetics was observed for the surface-sensitive [Fe(CN)6]3-/4- probe. Furthermore, the ability to electrochemically detect organic compounds of different structural motifs, such as glucose, ascorbic acid, uric acid, tyrosine, and dopamine, was successfully verified and compared with commercially available screen-printed BDD electrodes. The newly developed chip-based manufacture method enables the rapid prototyping of different small-scale electrode designs and BDD microstructures, which can lead to enhanced sensor performance with capability of repeated use.

5.
Crit Rev Anal Chem ; : 1-92, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968923

RESUMO

Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.

6.
Anal Chim Acta ; 1182: 338949, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602205

RESUMO

Novel porous boron-doped diamond (BDDporous)-based materials have attracted lots of research interest due to their enhanced detection ability and biocompatibility, favouring them for use in neuroscience. This study reports on morphological, spectral, and electrochemical characterisation of three BDDporous electrodes of different thickness given by a number of deposited layers (2, 3 and 5). These were prepared using microwave plasma-enhanced chemical vapour deposition on SiO2 nanofiber-based scaffolds. Further, the effect of number of layers and poly-l-lysine coating, commonly employed in neuron cultivation experiments, on sensing properties of the neurotransmitter dopamine in a pH 7.4 phosphate buffer media was investigated. The boron doping level of ∼2 × 1021 atoms cm-3 and increased content of non-diamond (sp2) carbon in electrodes with more layers was evaluated by Raman spectroscopy. Cyclic voltammetric experiments revealed reduced working potential windows (from 2.4 V to 2.2 V), higher double-layer capacitance values (from 405 µF cm-2 to 1060 µF cm-2), enhanced rates of electron transfer kinetics and larger effective surface areas (from 5.04 mm2 to 7.72 mm2), when the number of porous layers increases. For dopamine, a significant boost in analytical performance was recognized with increasing number of layers using square-wave voltammetry: the highest sensitivity of 574.1 µA µmol-1 L was achieved on a BDDporous electrode with five layers and dropped to 35.9 µA µmol-1 L when the number of layers decreased to two. Consequently, the lowest detection limit of 0.20 µmol L-1 was obtained on a BDDporous electrode with five layers. Moreover, on porous electrodes, enhanced selectivity for dopamine detection in the presence of ascorbic acid and uric acid was demonstrated. The application of poly-l-lysine coating on porous electrode surface resulted in a decrease in dopamine peak currents by 17% and 60% for modification times of 1 h and 15 h, respectively. Hence, both examined parameters, the number of deposited porous layers and the presence of poly-l-lysine coating, were proved to considerably affect the characteristics and performance of BDDporous electrodes.


Assuntos
Boro , Dopamina , Eletrodos , Porosidade , Dióxido de Silício
7.
Bioelectrochemistry ; 137: 107646, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32957020

RESUMO

Chemically inert and biocompatible boron-doped diamond (BDD) has been successfully used in neuroscience for sensitive neurochemicals sensing and/or as a growth substrate for neurons. In this study, several types of BDD differing in (i) fabrication route, i.e. conventional microwave plasma enhanced chemical vapour deposition (MW-PECVD) reactor vs. MW-PECVD with linear antenna delivery system, (ii) morphology, i.e. planar vs. porous BDD, and (iii) surface treatment, i.e. H-terminated (H-BDDs) vs. O-terminated (O-BDDs), were characterized from a morphological, structural, and electrochemical point of view. Further, planar and porous BDD-based electrodes were tested for sensing of dopamine in common biomimicking environments of pH 7.4, namely phosphate buffer (PB) and HEPES buffered saline (HBS). In HBS, potential windows are narrowed due to electrooxidation of its buffering component (i.e. HEPES), however, dopamine sensing in HBS is possible. H-BDDs (both planar and porous) outperformed O-BDDs as they provided clearer dopamine signals with higher peak currents. As expected, due to its enlarged surface area and increased sp2 content, the highest sensitivity and lowest detection limits of 8 × 10-8 mol L-1 and 6 × 10-8 mol L-1 in PB and HBS media, respectively, were achieved by square-wave voltammetry on porous H-BDD.


Assuntos
Boro/química , Meios de Cultura/química , Diamante/química , Dopamina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Biomimética , Limite de Detecção , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
8.
Anal Chim Acta ; 1077: 30-66, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31307723

RESUMO

This review summarizes progress in electroanalysis of organic compounds and biomacromolecules by means of bare BDD-based electrodes for the period of 2009-2018. New trends, which have emerged in the reported decade and which have improved their performance in batch voltammetric and amperometric methods and electrochemical detection in liquid flow techniques are commented. Importance of BDD surface termination, effect of boron doping level, and utilization of adsorption of analytes on BDD surfaces enabling development of adsorptive voltammetric techniques are addressed. Further, possibilities of simultaneous determination of analytes by means of voltammetric techniques utilizing computational approaches and multiple-pulse amperometric detection are discussed. Strategies leading to enhancement of sensitivity such as nanostructuring of the BDD surface, fabrication of BDD-based composite materials or new approaches in construction of microelectrodes and microelectrode arrays for biosensing represent another area of interest. Attention is paid to possibilities in detection of amino acids, peptides and proteins, nucleobases, nucleos(t)ides and DNA/RNA.


Assuntos
Boro/química , Diamante/química , Microeletrodos , Compostos Orgânicos/análise , DNA/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Peptídeos/análise , Proteínas/análise , RNA/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA