Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 190: 170-184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740143

RESUMO

Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.


Assuntos
Cognição , Seleção Genética , Animais , Humanos , Biologia , Evolução Biológica
2.
Plant Signal Behav ; 19(1): 2348917, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38704856

RESUMO

Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Escuridão , Luz , Plântula/metabolismo , Ácidos Indolacéticos/metabolismo
3.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674541

RESUMO

Being sessile organisms that need to effectively explore space (above and below ground) and acquire resources through growth, plants must simultaneously consider multiple possibilities and wisely balance the energy they spend on growth with the benefits for survival [...].

4.
Biosystems ; 238: 105197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556108

RESUMO

Our previous efforts to probe the complex, rich experiential lives of unicellular species have focused on the origins of consciousness (Reber, 2019) and the biomolecular processes that underlie sentience (Reber et al., 2023). Implied, but unexplored, was the assumption that these cognitive functions and associated unicellular organismal behaviors were linked with and often driven by affect, feelings, sensual experiences. In this essay we dig more deeply into these valenced (We're using the term valence here to cover the aspects of sensory experiences that have evaluative elements, are experienced as positive or negative ─ those where this affective, internal representation is an essential element in how the input is interpreted and responded to.) self-referencing features. In the first part, we examine the empirical evidence for various sensual experiences that have been identified. In the second part, we look at other features of prokaryote life that appear to also have affective, valenced elements but where the data to support the proposition aren't as strong. We engage in some informed speculation about these phenomena.


Assuntos
Cognição , Emoções , Estado de Consciência
5.
Prog Biophys Mol Biol ; 187: 21-35, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316274

RESUMO

Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.


Assuntos
Evolução Biológica , Comunicação Celular , Inteligência/fisiologia
7.
J Physiol ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847422

RESUMO

Cells evolved some 4 billion years ago, and since then the integrity of the structural and functional continuity of cellular life has been maintained via highly conserved and ancient processes of cell reproduction and division. The plasma membrane as well as all the cytoplasmic structures are reproduced and inherited uninterruptedly by each of the two daughter cells resulting from every cell division. Although our understanding of the evolutionary emergence of the very first cells is obscured by the extremely long timeline since that revolutionary event, the generally accepted position is that the de novo formation of cells is not possible; all present cells are products of other prior cells. This essential biological principle was first discovered by Robert Remak and then effectively coined as Omnis Cellula e Cellula (every cell of the cell) by Rudolf Virchow: all currently living cells have direct structural and functional connections to the very first cells. Based on our previous theoretical analysis, all cells are endowed with individual sentient cognition that guides their individual agency, behaviour and evolution. There is a vital consequence of this new sentient and cognitive view of cells: when cells assemble as functional tissue ecologies and organs within multicellular organisms, including plants, animals and humans, these cellular aggregates display derivative versions of aggregate tissue- and organ-specific sentience and consciousness. This innovative view of the evolution and physiology of all currently living organisms supports a singular principle: all organismal physiology is based on cellular physiology that extends from unicellular roots.

9.
J Plant Physiol ; 287: 154045, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356321

RESUMO

Plant cell walls are embedded in a pectin matrix which is physically linked with the wall-associated kinases (WAKs), a subfamily of receptor-like kinases that participate in the cell wall integrity (CWI) sensing. Since cell walls are also the main binding sites for boron (B) and aluminum (Al), WAK may be potentially associated with the regulation of plant responses to Al toxicity and B deficiency. Using pea as a model species, we have identified a total of 28 WAK genes in the genome and named them according to its chromosomal location. All the PsWAKs were phylogenetically grouped into three clades. Phylogenetic relationship and synteny analysis showed that the PsWAKs in pea and Glycine max or Medicago truncatula shared a relatively conserved evolutionary history. Protein domain, motif, and transmembrane analysis indicated that all PsWAK proteins were predicted to be localized to the plasma membrane, and most PsWAKs shared a similar structure to their homologs. The RNA-seq data showed that the expression pattern of WAK genes in response to B deficiency was similar to that of Al toxicity, with most of PsWAKs being up-regulated. The qRT-PCR results further confirmed that PsWAK5, PsWAK9 and PsWAK14 were more specific for both B-deficiency and Al toxicity, and the expression levels of PsWAK5, PsWAK9 and PsWAK14 were significantly higher in the Al-sensitive cultivar Hyogo than in the Al-resistant cultivar Alaska under Al toxicity. This study provided an important basis for the functional and evolutionary analysis of PsWAKs and linked them to responses to cell wall damage induced by B-deficiency and Al toxicity, suggesting that PsWAKs may play a key role in the perception of cell wall integrity under Al toxicity or B-deficiency, as well as in the regulation of Al tolerance in pea.


Assuntos
Alumínio , Pisum sativum , Pisum sativum/genética , Pisum sativum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Filogenia , Proteínas Quinases/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Prog Biophys Mol Biol ; 182: 34-48, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268025

RESUMO

Crick's Central Dogma has been a foundational aspect of 20th century biology, describing an implicit relationship governing the flow of information in biological systems in biomolecular terms. Accumulating scientific discoveries support the need for a revised Central Dogma to buttress evolutionary biology's still-fledgling migration from a Neodarwinian canon. A reformulated Central Dogma to meet contemporary biology is proposed: all biology is cognitive information processing. Central to this contention is the recognition that life is the self-referential state, instantiated within the cellular form. Self-referential cells act to sustain themselves and to do so, cells must be in consistent harmony with their environment. That consonance is achieved by the continuous assimilation of environmental cues and stresses as information to self-referential observers. All received cellular information must be analyzed to be deployed as cellular problem-solving to maintain homeorhetic equipoise. However, the effective implementation of information is definitively a function of orderly information management. Consequently, effective cellular problem-solving is information processing and management. The epicenter of that cellular information processing is its self-referential internal measurement. All further biological self-organization initiates from this obligate activity. As the internal measurement by cells of information is self-referential by definition, self-reference is biological self-organization, underpinning 21st century Cognition-Based Biology.


Assuntos
Evolução Biológica , Cognição , Biologia
11.
Plant J ; 115(5): 1357-1376, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235684

RESUMO

The mechanistic basis by which boron (B) deprivation inhibits root growth via the mediation of root apical auxin transport and distribution remains elusive. This study showed that B deprivation repressed root growth of wild-type Arabidopsis seedlings, which was related to higher auxin accumulation (observed with DII-VENUS and DR5-GFP lines) in B-deprived roots. Boron deprivation elevated the auxin content in the root apex, coinciding with upregulation of the expression levels of auxin biosynthesis-related genes (TAA1, YUC3, YUC9, and NIT1) in shoots, but not in root apices. Phenotyping experiments using auxin transport-related mutants revealed that the PIN2/3/4 carriers are involved in root growth inhibition caused by B deprivation. B deprivation not only upregulated the transcriptional levels of PIN2/3/4, but also restrained the endocytosis of PIN2/3/4 carriers (observed with PIN-Dendra2 lines), resulting in elevated protein levels of PIN2/3/4 in the plasma membrane. Overall, these results suggest that B deprivation not only enhances auxin biosynthesis in shoots by elevating the expression levels of auxin biosynthesis-related genes but also promotes the polar auxin transport from shoots to roots by upregulating the gene expression levels of PIN2/3/4, as well as restraining the endocytosis of PIN2/3/4 carriers, ultimately resulting in auxin accumulation in root apices and root growth inhibition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Boro/metabolismo , Raízes de Plantas/metabolismo
12.
Plant J ; 114(1): 176-192, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721978

RESUMO

The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Boro/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo
13.
Biosystems ; 218: 104694, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595194

RESUMO

All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Membrana Celular , Cognição , RNA/genética
14.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616190

RESUMO

Vision is essential for most organisms, and it is highly variable across kingdoms and domains of life. The most known and understood form is animal and human vision based on eyes. Besides the wide diversity of animal eyes, some animals such as cuttlefish and cephalopods enjoy so-called dermal or skin vision. The most simple and ancient organ of vision is the cell itself and this rudimentary vision evolved in cyanobacteria. More complex are so-called ocelloids of dinoflagellates which are composed of endocellular organelles, acting as lens- and cornea/retina-like components. Although plants have almost never been included into the recent discussions on organismal vision, their plant-specific ocelli had already been proposed by Gottlieb Haberlandt already in 1905. Here, we discuss plant ocelli and their roles in plant-specific vision, both in the shoots and roots of plants. In contrast to leaf epidermis ocelli, which are distributed throughout leaf surface, the root apex ocelli are located at the root apex transition zone and serve the light-guided root navigation. We propose that the plant ocelli evolved from the algal ocelloids, are part of complex plant sensory systems and guide cognition-based plant behavior.

15.
Plant Signal Behav ; 16(12): 2004769, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913409

RESUMO

Before the upheaval brought about by phylogenetic classification, classical taxonomy separated living beings into two distinct kingdoms, animals and plants. Rooted in 'naturalist' cosmology, Western science has built its theoretical apparatus on this dichotomy mostly based on ancient Aristotelian ideas. Nowadays, despite the adoption of the Darwinian paradigm that unifies living organisms as a kinship, the concept of the "scale of beings" continues to structure our analysis and understanding of living species. Our aim is to combine developments in phylogeny, recent advances in biology, and renewed interest in plant agency to craft an interdisciplinary stance on the living realm. The lines at the origin of plant or animal have a common evolutionary history dating back to about 3.9 Ga, separating only 1.6 Ga ago. From a phylogenetic perspective of living species history, plants and animals belong to sister groups. With recent data related to the field of Plant Neurobiology, our aim is to discuss some socio-cultural obstacles, mainly in Western naturalist epistemology, that have prevented the integration of living organisms as relatives, while suggesting a few avenues inspired by practices principally from other ontologies that could help overcome these obstacles and build bridges between different ways of connecting to life.


Assuntos
Botânica , Animais , Evolução Biológica , Cegueira , Filogenia , Plantas/genética
17.
Bioessays ; 43(10): e2100121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34382225

RESUMO

Cellular circadian clocks represent ancient anticipatory systems which co-evolved with the first cells to safeguard their survival. Cyanobacteria represent one of the most ancient cells, having essentially invented photosynthesis together with redox-based cellular circadian clocks some 2.7 billion years ago. Bioelectricity phenomena, based on redox homeostasis associated electron transfers in membranes and within protein complexes inserted in excitable membranes, play important roles, not only in the cellular circadian clocks and in anesthetics-sensitive cellular sentience (awareness of environment), but also in the coupling of single cells into tissues and organs of unitary multicellular organisms. This integration of cellular circadian clocks with cellular basis of sentience is an essential feature of the cognitive CBC-Clock basis of cellular life.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Cognição , Oxirredução , Fotossíntese
18.
Front Plant Sci ; 12: 665014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108983

RESUMO

Circular RNA (circRNA) is a novel class of endogenous long non-coding RNA (lncRNA) and participates in diverse physiological process in plants. From the dataset obtained by high-throughput RNA sequencing, we identified a circRNA encoded by the sense strand of the exon regions spanning two RuBisCO small subunit genes, RBCS2B and RBCS3B, in Arabidopsis thaliana. We further applied the single specific primer-polymerase chain reaction (PCR) and Sanger sequencing techniques to verify this circRNA and named it ag-circRBCS (antisense and across genic-circular RNA RBCS). Using quantitative real-time PCR (qRT-PCR), we found that ag-circRBCS shares a similar rhythmic expression pattern with other RBCS genes. The expression level of ag-circRBCS is 10-40 times lower than the expression levels of RBCS genes in the photosynthetic organs in Arabidopsis, whereas the Arabidopsis root lacked ag-circRBCS expression. Furthermore, we used the delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) to deliver in vitro synthesized ag-circRBCS into Arabidopsis seedlings. Our results indicate that ag-circRBCS could significantly depress the expression of RBCS. Given that ag-circRBCS was expressed at low concentration in vivo, we suggest that ag-circRBCS may represent a fine-tuning mechanism to regulating the expression of RBCS genes and protein content in Arabidopsis.

19.
Plant Signal Behav ; 16(6): 1911400, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33853497

RESUMO

Barbara Gillespie Pickard (1936-2019) studied plant electrophysiology and mechanosensory biology for more than 50 y. Her first papers on the roles of auxin in plant tropisms were coauthored with Kenneth V. Thimann. Later, she studied plant electrophysiology. She made it clear that plant action potentials are not a peculiar feature of so-called sensitive plants, but that all plants exhibit these fast electric signals. Barbara Gillespie Pickard proposed a neuronal model for the spreading of electric signals induced by mechanical stimuli across plant tissues. In later years, she studied the stretch-activated plasma membrane channels of plants and formulated the plasma-membrane control center model. Barbara Pickard summarized all her findings in a new model of phyllotaxis involving waves of auxin fluxes and mechano-sensory signaling.


Assuntos
Eletrofisiologia/história , Ácidos Indolacéticos/metabolismo , Fenômenos Fisiológicos Vegetais , Pesquisadores/história , Tricomas/fisiologia , Tropismo/fisiologia , História do Século XX , História do Século XXI , Estados Unidos
20.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802617

RESUMO

Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.


Assuntos
Membrana Celular/fisiologia , Estado de Consciência/fisiologia , Animais , Evolução Biológica , Biologia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA