Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO Rep ; 25(3): 1310-1325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321165

RESUMO

Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.


Assuntos
Poxviridae , Vacínia , Humanos , Sulfatos de Condroitina , Vaccinia virus/metabolismo , Poxviridae/metabolismo , Proteínas Virais/metabolismo , Fusão de Membrana , Proteínas de Transporte
2.
BJR Case Rep ; 5(2): 20180108, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31501707

RESUMO

In normal anatomy, the kidneys and adrenal glands are contained within the renal fascia and separated by a connective tissue capsule derived from mesenchymal tissue. Incomplete encapsulation can occur during embryonic development, resulting in adrenal-renal fusion. The true incidence of this developmental anomaly is unknown, as it has primarily been described in the literature following incidental detection on surgical or histological examination. We report the first documented case of bilateral adrenal-renal fusion, diagnosed radiologically.

3.
PLoS Genet ; 13(9): e1007010, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922373

RESUMO

Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, "natural" antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHEL Igm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis.


Assuntos
Linfócitos B/metabolismo , Dineínas/genética , Linfoma de Células B/genética , Fatores de Transcrição/genética , Animais , Linfócitos B/imunologia , Linhagem da Célula/genética , Dineínas do Citoplasma , Dineínas/metabolismo , Regulação da Expressão Gênica , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfoma de Células B/patologia , Camundongos , Cavidade Peritoneal , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Cell Rep ; 14(6): 1488-1499, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26832406

RESUMO

How MYC promotes the development of cancer remains to be fully understood. Here, we report that the Zn(2+)-finger transcription factor ASCIZ (ATMIN, ZNF822) synergizes with MYC to activate the expression of dynein light chain (DYNLL1, LC8) in the murine Eµ-Myc model of lymphoma. Deletion of Asciz or Dynll1 prevented the abnormal expansion of pre-B cells in pre-cancerous Eµ-Myc mice and potentiated the pro-apoptotic activity of MYC in pre-leukemic immature B cells. Constitutive loss of Asciz or Dynll1 delayed lymphoma development in Eµ-Myc mice, and induced deletion of Asciz in established lymphomas extended the survival of tumor-bearing mice. We propose that ASCIZ-dependent upregulation of DYNLL1 levels is essential for the development and expansion of MYC-driven lymphomas by enabling the survival of pre-neoplastic and malignant cells.


Assuntos
Dineínas/genética , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Células Precursoras de Linfócitos B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/patologia , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Dineínas do Citoplasma , Modelos Animais de Doenças , Dineínas/deficiência , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/mortalidade , Linfoma de Células B/patologia , Camundongos , Células Precursoras de Linfócitos B/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/deficiência
5.
Camb Q Healthc Ethics ; 24(3): 355-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26059960

RESUMO

I raise several concerns with Earp and colleagues' analysis of enhancement through neurochemical modulation of love as a key issue in contemporary neuroethics. These include: (i) strengthening their deflation of medicalization concerns by showing how the objection that love should be left outside of the scope of medicine would directly undermine the goal of medicine; (ii) developing stronger analysis of the social and political concerns relevant to neurochemical modulation of love, by exploring and suggesting possible counters to ways in which 'wellbeing' may be used as a tool of oppression; (iii) providing reasons to support a broad need for ecological investigation of, and indeed ecological education concerning, neurotechnology; (iv) suggesting ways in which philosophy, and the humanities more broadly, remain directly relevant to responding effectively to issues in contemporary neuroethics.


Assuntos
Melhoramento Biomédico/ética , Amor , Medicalização/ética , Princípios Morais , Neurociências/ética , Filosofia Médica , Valores Sociais , Análise Ética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA