Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 322, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237861

RESUMO

BACKGROUND: A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS: The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS: Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.


Assuntos
Antibacterianos , Bactérias , Ixodidae , Microbiota , Animais , Antibacterianos/farmacologia , Ixodidae/microbiologia , Ixodidae/efeitos dos fármacos , Ixodidae/parasitologia , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Babesia/efeitos dos fármacos , Babesia/genética , Interações Microbianas/efeitos dos fármacos , Babesiose/parasitologia , Babesiose/transmissão , Babesiose/tratamento farmacológico , Babesia microti/efeitos dos fármacos , Babesia microti/genética , Haemaphysalis longicornis
2.
Mol Ecol ; : e17506, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161118

RESUMO

The Ornithodoros moubata (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between Pseudomonas, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of Pseudomonas within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting Pseudomonas and Lactobacillus on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, Pseudomonas plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting Pseudomonas and Lactobacillus yields distinct effects on tick fitness, with Pseudomonas vaccination significantly impacting female tick survival, while Lactobacillus significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight Pseudomonas' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.

3.
Pathogens ; 12(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887774

RESUMO

In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.

4.
Sci Rep ; 12(1): 7484, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524154

RESUMO

The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.


Assuntos
Alimentos Fermentados , Lacticaseibacillus paracasei , Lactobacillales , Probióticos , Escherichia coli
5.
Probiotics Antimicrob Proteins ; 13(5): 1254-1266, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33791994

RESUMO

Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fermented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for malaria control.


Assuntos
Alimento Funcional , Microbioma Gastrointestinal , Sistema Imunitário , Malária , Humanos , Lactobacillales , Malária/imunologia , Malária/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA