Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 257: 116302, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648705

RESUMO

This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.


Assuntos
Técnicas Biossensoriais , Próteses e Implantes , Técnicas Biossensoriais/instrumentação , Humanos , Eletrônica/instrumentação , Impressão Tridimensional , Desenho de Equipamento , Nanoestruturas/química , Atenção à Saúde/tendências
2.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139573

RESUMO

Skin-based wearable devices have gained significant attention due to advancements in soft materials and thin-film technologies. Nevertheless, traditional wearable electronics often entail expensive and intricate manufacturing processes and rely on metal-based substrates that are susceptible to corrosion and lack flexibility. In response to these challenges, this paper has emerged with an alternative substrate for wearable electrodes due to its cost-effectiveness and scalability in manufacturing. Paper-based electrodes offer an attractive solution with their inherent properties of high breathability, flexibility, biocompatibility, and tunability. In this study, we introduce carbon nanotube-based paper composites (CPC) electrodes designed for the continuous detection of biopotential signals, such as electrooculography (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). To prevent direct skin contact with carbon nanotubes, we apply various packaging materials, including polydimethylsiloxane (PDMS), Eco-flex, polyimide (PI), and polyurethane (PU). We conduct a comparative analysis of their signal-to-noise ratios in comparison to conventional gel electrodes. Our system demonstrates real-time biopotential monitoring for continuous health tracking, utilizing CPC in conjunction with a portable data acquisition system. The collected data are analyzed to provide accurate heart rates, respiratory rates, and heart rate variability metrics. Additionally, we explore the feasibility using CPC for sleep monitoring by collecting EEG signals.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Pele , Eletrodos , Sono , Eletrocardiografia
3.
ACS Appl Electron Mater ; 5(2): 877-886, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873262

RESUMO

Recent advances in wearable technologies have enabled ways for people to interact with external devices, known as human-machine interfaces (HMIs). Among them, electrooculography (EOG), measured by wearable devices, is used for eye movement-enabled HMI. Most prior studies have utilized conventional gel electrodes for EOG recording. However, the gel is problematic due to skin irritation, while separate bulky electronics cause motion artifacts. Here, we introduce a low-profile, headband-type, soft wearable electronic system with embedded stretchable electrodes, and a flexible wireless circuit to detect EOG signals for persistent HMIs. The headband with dry electrodes is printed with flexible thermoplastic polyurethane. Nanomembrane electrodes are prepared by thin-film deposition and laser cutting techniques. A set of signal processing data from dry electrodes demonstrate successful real-time classification of eye motions, including blink, up, down, left, and right. Our study shows that the convolutional neural network performs exceptionally well compared to other machine learning methods, showing 98.3% accuracy with six classes: the highest performance till date in EOG classification with only four electrodes. Collectively, the real-time demonstration of continuous wireless control of a two-wheeled radio-controlled car captures the potential of the bioelectronic system and the algorithm for targeting various HMI and virtual reality applications.

4.
ACS Appl Mater Interfaces ; 15(1): 2092-2103, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36594669

RESUMO

Recent advances in soft materials and nano-microfabrication have enabled the development of flexible wearable electronics. At the same time, printing technologies have been demonstrated to be efficient and compatible with polymeric materials for manufacturing wearable electronics. However, wearable device manufacturing still counts on a costly, complex, multistep, and error-prone cleanroom process. Here, we present fully screen-printable, skin-conformal electrodes for low-cost and scalable manufacturing of wearable electronics. The screen printing of the polyimide (PI) layer enables facile, low-cost, scalable, high-throughput manufacturing. PI mixed with poly(ethylene glycol) exhibits a shear-thinning behavior, significantly improving the printability of PI. The premixed Ag/AgCl ink is then used for conductive layer printing. The serpentine pattern of the screen-printed electrode accommodates natural deformation under stretching (30%) and bending conditions (180°), which are verified by computational and experimental studies. Real-time wireless electrocardiogram monitoring is also successfully demonstrated using the printed electrodes with a flexible printed circuit. The algorithm developed in this study can calculate accurate heart rates, respiratory rates, and heart rate variability metrics for arrhythmia detection.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Polímeros , Eletrodos , Polietilenoglicóis
5.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421157

RESUMO

Eye movements show primary responses that reflect humans' voluntary intention and conscious selection. Because visual perception is one of the fundamental sensory interactions in the brain, eye movements contain critical information regarding physical/psychological health, perception, intention, and preference. With the advancement of wearable device technologies, the performance of monitoring eye tracking has been significantly improved. It also has led to myriad applications for assisting and augmenting human activities. Among them, electrooculograms, measured by skin-mounted electrodes, have been widely used to track eye motions accurately. In addition, eye trackers that detect reflected optical signals offer alternative ways without using wearable sensors. This paper outlines a systematic summary of the latest research on various materials, sensors, and integrated systems for monitoring eye movements and enabling human-machine interfaces. Specifically, we summarize recent developments in soft materials, biocompatible materials, manufacturing methods, sensor functions, systems' performances, and their applications in eye tracking. Finally, we discuss the remaining challenges and suggest research directions for future studies.


Assuntos
Movimentos Oculares , Dispositivos Eletrônicos Vestíveis , Humanos , Materiais Biocompatíveis , Encéfalo , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA