Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 176: 105727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555055

RESUMO

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.


Assuntos
Epilepsia do Lobo Temporal , Proteínas de Ligação a RNA , Receptores de AMPA , Convulsões , Transmissão Sináptica , Animais , Feminino , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Ácido Caínico/toxicidade , Camundongos Endogâmicos C57BL , Receptores de AMPA/metabolismo , Convulsões/metabolismo , Convulsões/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Glia ; 72(6): 1082-1095, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385571

RESUMO

Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.


Assuntos
Epilepsia , Vesículas Extracelulares , MicroRNAs , Humanos , Astrócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA