Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(6): 1087-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763938

RESUMO

The protection of Earth's stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme's Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.


Assuntos
Ozônio Estratosférico , Raios Ultravioleta , Humanos , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Ozônio/química , Mudança Climática
2.
Photochem Photobiol Sci ; 22(5): 1093-1127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129840

RESUMO

Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.


Assuntos
Perda de Ozônio , Ozônio , Animais , Humanos , Ozônio Estratosférico , Raios Ultravioleta , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Plásticos , Água do Mar
3.
Photochem Photobiol Sci ; 21(3): 275-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191005

RESUMO

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio/química , Ozônio Estratosférico , Raios Ultravioleta
4.
Photochem Photobiol Sci ; 20(1): 1-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721243

RESUMO

This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.

5.
Photochem Photobiol Sci ; 19(5): 542-584, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32364555

RESUMO

This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.


Assuntos
Mudança Climática , Ozônio Estratosférico , Raios Ultravioleta , Saúde Ambiental , Humanos , Microplásticos , Nações Unidas
7.
Dis Aquat Organ ; 47(3): 229-34, 2001 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-11804422

RESUMO

An outbreak of necrotic patches was observed affecting Acropora palmata in the Mexican Caribbean in the summer of 1999. This study documents the tissue loss produced by these patches. Following a marked initial increase in the number of patches, there was a decrease in the appearance of new patches but the size of the patches increased throughout the study. In some cases patches expanded but in most cases they enlarged due to fusion of 2 or more patches. Patches recovered but not sufficiently to overcome damage in most colonies surveyed. Percentage tissue loss does not appear to be directly related to temperature but may be related to a combination of factors associated with prolonged summer doldrum-like conditions. The necrotic patch syndrome can have a substantial impact in tissue loss in affected A. palmata colonies.


Assuntos
Cnidários , Animais , Região do Caribe/epidemiologia , Surtos de Doenças/veterinária , México/epidemiologia , Necrose , Estações do Ano , Síndrome
9.
Mol Mar Biol Biotechnol ; 1(3): 215-8, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1308205

RESUMO

The marine yeast Debaryomyces hansenii is known to tolerate salinities ranging from 0 to 24%. As a first step toward the molecular analysis of halotolerance in this organism, we report the isolation of an autonomously replicating sequence (ARS) and its use in the construction of a shuttle vector. The ARS from D. hansenii (ARSD) is 0.4 kbp long, and the function rests in 0.13 kbp of the sequence. Sequence analysis of ARSD shows strong homology to ARS from other organisms, including a 12-bp consensus sequence common to all ARS functional in Saccharomyces cerevisiae.


Assuntos
DNA Fúngico/química , Saccharomycetales/genética , Microbiologia da Água , Leveduras/genética , Sequência de Bases , Southern Blotting , Sequência Consenso , Replicação do DNA , DNA Fúngico/isolamento & purificação , Genes Fúngicos , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Água do Mar , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA