Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(12): 4969-4977, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38567375

RESUMO

Electrolyte species can significantly influence the electrocatalytic performance. In this work, we investigate the impact of alkali metal cations on the oxygen reduction reaction (ORR) on active Pt5Gd and Pt5Y polycrystalline electrodes. Due to the strain effects, Pt alloys exhibit a higher kinetic current density of ORR than pure Pt electrodes in acidic media. In alkaline solutions, the kinetic current density of ORR for Pt alloys decreases linearly with the decreasing hydration energy in the order of Li+ > Na+ > K+ > Rb+ > Cs+, whereas Pt shows the opposite trend. To gain further insights into these experimental results, we conduct complementary density functional theory calculations considering the effects of both electrode surface strain and electrolyte chemistry. The computational results reveal that the different trends in the ORR activity in alkaline media can be explained by the change in the adsorption energy of reaction intermediates with applied surface strain in the presence of alkali metal cations. Our findings provide important insights into the effects of the electrolyte and the strain conditions on the electrocatalytic performance and thus offer valuable guidelines for optimizing Pt-based electrocatalysts.

2.
J Am Chem Soc ; 146(6): 3883-3889, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38316015

RESUMO

The classical theory of the electrical double layer (EDL) does not consider the effects of the electrode surface structure on the EDL properties. Moreover, the best agreement between the traditional EDL theory and experiments has been achieved so far only for a very limited number of ideal systems, such as liquid metal mercury electrodes, for which it is challenging to operate with specific surface structures. In the case of solid electrodes, the predictive power of classical theory is often not acceptable for electrochemical energy applications, e.g., in supercapacitors, due to the effects of surface structure, electrode composition, and complex electrolyte contributions. In this work, we combine ab initio molecular dynamics (AIMD) simulations and electrochemical experiments to elucidate the relationship between the structure of Pt(hkl) surfaces and the double-layer capacitance as a key property of the EDL. Flat, stepped, and kinked Pt single crystal facets in contact with acidic HClO4 media are selected as our model systems. We demonstrate that introducing specific defects, such as steps, can substantially reduce the EDL capacitances close to the potential of zero charge (PZC). Our AIMD simulations reveal that different Pt facets are characterized by different net orientations of the water dipole moment at the interface. That allows us to rationalize the experimentally measured (inverse) volcano-shaped capacitance as a function of the surface step density.

3.
Commun Chem ; 6(1): 124, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322266

RESUMO

All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.

4.
ACS Appl Mater Interfaces ; 15(19): 23951-23962, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145973

RESUMO

Prussian blue analogues are considered as promising candidates for aqueous sodium-ion batteries providing a decently high energy density for stationary energy storage. However, suppose the operation of such materials under high-power conditions could be facilitated. In that case, their application might involve fast-response power grid stabilization and enable short-distance urban mobility due to fast re-charging. In this work, sodium nickel hexacyanoferrate thin-film electrodes are synthesized via a facile electrochemical deposition approach to form a model system for a robust investigation. Their fast-charging capability is systematically elaborated with regard to the electroactive material thickness in comparison to a ″traditional″ composite-type electrode. It is found that quasi-equilibrium kinetics allow extremely fast (dis)charging within a few seconds for sub-micron film thicknesses. Specifically, for a thickness below ≈ 500 nm, 90% of the capacity can be retained at a rate of 60C (1 min for full (dis)charge). A transition toward mass transport control is observed when further increasing the rate, with thicker films being dominated by this mode earlier than thinner films. This can be entirely attributed to the limiting effects of solid-state diffusion of Na+ within the electrode material. By presenting a PBA model cell yielding 25 Wh kg-1 at up to 10 kW kg-1, this work highlights a possible pathway toward the guided design of hybrid battery-supercapacitor systems. Furthermore, open challenges associated with thin-film electrodes are discussed, such as the role of parasitic side reactions, as well as increasing the mass loading.

5.
Small ; 18(30): e2202410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726004

RESUMO

The structure-activity relationship is a cornerstone topic in catalysis, which lays the foundation for the design and functionalization of catalytic materials. Of particular interest is the catalysis of the hydrogen evolution reaction (HER) by palladium (Pd), which is envisioned to play a major role in realizing a hydrogen-based economy. Interestingly, experimentalists observed excess heat generation in such systems, which became known as the debated "cold fusion" phenomenon. Despite the considerable attention on this report, more fundamental knowledge, such as the impact of the formation of bulk Pd hydrides on the nature of active sites and the HER activity, remains largely unexplored. In this work, classical electrochemical experiments performed on model Pd(hkl) surfaces, "noise" electrochemical scanning tunneling microscopy (n-EC-STM), and density functional theory are combined to elucidate the nature of active sites for the HER. Results reveal an activity trend following Pd(111) > Pd(110) > Pd(100) and that the formation of subsurface hydride layers causes morphological changes and strain, which affect the HER activity and the nature of active sites. These findings provide significant insights into the role of subsurface hydride formation on the structure-activity relations toward the design of efficient Pd-based nanocatalysts for the HER.


Assuntos
Paládio , Prótons , Catálise , Hidrogênio/química , Paládio/química
6.
ACS Appl Mater Interfaces ; 14(17): 19604-19613, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442013

RESUMO

For large-scale applications of hydrogen fuel cells, the sluggish kinetics of the oxygen reduction reaction (ORR) have to be overcome. So far, only platinum (Pt)-group catalysts have shown adequate performance and stability. A well-known approach to increase the efficiency and decrease the Pt loading is to alloy Pt with other metals. Still, for catalyst optimization, the nature of the active sites is crucial. In this work, electrochemical scanning tunneling microscopy (EC-STM) is used to probe the ORR active areas on Pt5Gd and Pt5Pr in acidic media under reaction conditions. The technique detects localized fluctuations in the EC-STM signal, which indicates differences in the local activity. The in situ experiments, supported by coordination-activity plots based on density functional theory calculations, show that the compressed Pt-lanthanide (111) terraces contribute the most to the overall activity. Sites with higher coordination, as found at the bottom of step edges or concavities, remain relatively inactive. Sites of lower coordination, as found near the top of step edges, show higher activity, presumably due to an interplay of strain and steric hindrance effects. These findings should be vital in designing nanostructured Pt-lanthanide electrocatalysts.

7.
ACS Appl Mater Interfaces ; 14(13): 15811-15817, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333504

RESUMO

The formation of space charge layers in solid-state ion conductors has been investigated as early as the 1980s. With the advent of all-solid-state batteries as an alternative to traditional Li-ion batteries, possibly improving performance and safety, the phenomenon of space charge formation caught the attention of researchers as a possible origin for the observed high interfacial resistance. Following classical space charge theory, such high resistances result from the formation of the depletion layers. These layers of up to hundreds of nanometers in thickness are almost free of mobile cations. With the prediction of a Debye-like screening effect, the thickness of the depletion layer is expected to scale with the square root of the absolute temperature. In this work, we studied the temperature dependence of the depletion layer properties in model solid Ohara LICGC Li+ conducting electrolytes using electrochemical impedance spectroscopy. We show that the activation energy inside the depletion layer increases to ca 0.42 eV compared to ca 0.39 eV in the bulk electrolyte. Moreover, the proportionality between temperature and depletion layer thickness, correlating to the Debye length, is tested and validated.

8.
Angew Chem Int Ed Engl ; 61(26): e202202744, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35312219

RESUMO

The solid-electrolyte interphase (SEI) plays a key role in the stability of lithium-ion batteries as the SEI prevents the continuous degradation of the electrolyte at the anode. The SEI acts as an insulating layer for electron transfer, still allowing the ionic flux through the layer. We combine the feedback and multi-frequency alternating-current modes of scanning electrochemical microscopy (SECM) for the first time to assess quantitatively the local electronic and ionic properties of the SEI varying the SEI formation conditions and the used electrolytes in the field of Li-ion batteries (LIB). Correlations between the electronic and ionic properties of the resulting SEI on a model Cu electrode demonstrates the unique feasibility of the proposed strategy to provide the two essential properties of an SEI: ionic and electronic conductivity in dependence on the formation conditions, which is anticipated to exhibit a significant impact on the field of LIBs.

9.
Angew Chem Int Ed Engl ; 61(24): e202201610, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35274423

RESUMO

Understanding the electrode/electrolyte interface is crucial for optimizing electrocatalytic performances. Here, we demonstrate that the nature of alkali metal cations can profoundly impact the oxygen evolution activity of surface-mounted metal-organic framework (SURMOF) derived electrocatalysts, which are based on NiFe(OOH). In situ Raman spectroscopy results show that Raman shifts of the Ni-O bending vibration are inversely proportional to the mass activities from Cs+ to Li+ . Particularly, a laser-induced current transient technique was introduced to study the cation-dependent electric double layer properties and their effects on the activity. The catalytic trend appeared to be closely related to the potential of maximum entropy of the system, suggesting a strong cation impact on the interfacial water layer structure. Our results highlight how the electrolyte composition can be used to maximize the performance of SURMOF derivatives toward electrochemical water splitting.

10.
ACS Appl Mater Interfaces ; 14(2): 3515-3525, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990115

RESUMO

Aqueous sodium-ion batteries based on Prussian Blue Analogues (PBA) are considered as promising and scalable candidates for stationary energy storage systems, where longevity and cycling stability are assigned utmost importance to maintain economic viability. Although degradation due to active material dissolution is a common issue of battery electrodes, it is hardly observable directly due to a lack of in operando techniques, making it challenging to optimize the performance of electrodes. By operating Na2Ni[Fe(CN)6] and Na2Co[Fe(CN)6] model electrodes in a flow-cell setup connected to an inductively coupled plasma mass spectrometer, in this work, the dynamics of constituent transition-metal dissolution during the charge-discharge cycles was monitored in real time. At neutral pHs, the extraction of nickel and cobalt was found to drive the degradation process during charge-discharge cycles. It was also found that the nature of anions present in the electrolytes has a significant impact on the degradation rate, determining the order ClO4- > NO3- > Cl- > SO42- with decreasing stability from the perchlorate to sulfate electrolytes. It is proposed that the dissolution process is initiated by detrimental specific adsorption of anions during the electrode oxidation, therefore scaling with their respective chemisorption affinity. This study involves an entire comparison of the effectiveness of common stabilization strategies for PBAs under very fast (dis)charging conditions at 300C, emphasizing the superiority of highly concentrated NaClO4 with almost no capacity loss after 10 000 cycles for Na2Ni[Fe(CN)6].

11.
Small Methods ; 5(2): e2000710, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927879

RESUMO

Identification of catalytically active sites at solid/liquid interfaces under reaction conditions is an essential task to improve the catalyst design for sustainable energy devices. Electrochemical scanning tunneling microscopy (EC-STM) combines the control of the surface reactions with imaging on a nanoscale. When performing EC-STM under reaction conditions, the recorded analytical signal shows higher fluctuations (noise) at active sites compared to non-active sites (noise-EC-STM or n-EC-STM). In the past, this approach has been proven as a valid tool to identify the location of active sites. In this work, the authors show that this method can be extended to obtain quantitative information of the local activity. For the platinum(111) surface under oxygen reduction reaction conditions, a linear relationship between the STM noise level and a measure of reactivity, the turn-over frequency is found. Since it is known that the most active sites for this system are located at concave sites, the method has been applied to quantify the activity at steps. The obtained activity enhancement factors appeared to be in good agreement with the literature. Thus, n-EC-STM is a powerful method not only to in situ identify the location of active sites but also to determine and compare local reactivity.

12.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815337

RESUMO

The development of inherently safe energy devices is a key challenge, and aqueous Li-ion batteries draw large attention for this purpose. Due to the narrow electrochemical stable potential window of aqueous electrolytes, the energy density and the selection of negative electrode materials are significantly limited. For achieving durable and high-energy aqueous Li-ion batteries, the development of negative electrode materials exhibiting a large capacity and low potential without triggering decomposition of water is crucial. Herein, a type of a negative electrode material (i.e., Li x Nb2/7Mo3/7O2) is proposed for high-energy aqueous Li-ion batteries. Li x Nb2/7Mo3/7O2 delivers a large capacity of ∼170 mA ⋅ h ⋅ g-1 with a low operating potential range of 1.9 to 2.8 versus Li/Li+ in 21 m lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) aqueous electrolyte. A full cell consisting of Li1.05Mn1.95O4/Li9/7Nb2/7Mo3/7O2 presents high energy density of 107 W ⋅ h ⋅ kg-1 as the maximum value in 21 m LiTFSA aqueous electrolyte, and 73% in capacity retention is achieved after 2,000 cycles. Furthermore, hard X-ray photoelectron spectroscopy study reveals that a protective surface layer is formed at the surface of the negative electrode, by which the high-energy and durable aqueous batteries are realized with Li x Nb2/7Mo3/7O2 This work combines a high capacity with a safe negative electrode material through delivering the Mo-based oxide with unique nanosized and metastable characters.

13.
Adv Mater ; 33(38): e2103218, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337809

RESUMO

Materials derived from surface-mounted metal-organic frameworks (SURMOFs) are promising electrocatalysts for the oxygen evolution reaction (OER). A series of mixed-metal, heterostructured SURMOFs is fabricated by the facile layer-by-layer deposition method. The obtained materials reveal record-high electrocatalyst mass activities of ≈2.90 kA g-1 at an overpotential of 300 mV in 0.1 m KOH, superior to the benchmarking precious and nonprecious metal electrocatalysts. This property is assigned to the particular in situ self-reconstruction and self-activation of the SURMOFs during the immersion and the electrochemical treatment in alkaline aqueous electrolytes, which allows for the generation of NiFe (oxy)hydroxide electrocatalyst materials of specific morphology and microstructure.

14.
Phys Chem Chem Phys ; 23(23): 12926-12944, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081066

RESUMO

Electrochemical impedance spectroscopy (EIS) is a versatile tool to understand complex processes in batteries. This technique can investigate the effects of battery components like the electrode and electrolyte, electrochemical reactions, interfaces, and interphases forming in the electrochemical systems. The interpretation of the EIS data is typically made using models expressed in terms of the so-called electrical equivalent circuits (EECs) to fit the impedance spectra. Therefore, the EECs must unambiguously represent the electrochemistry of the system. EEC models with a physical significance are more relevant than the empirical ones with their inherent imperfect description of the ongoing processes. This review aims to present the readers with the importance of physical EEC modeling within the context of battery research. A general introduction to EIS and EEC models along with a brief description of the mathematical formalism is provided, followed by showcasing the importance of physical EEC models for EIS on selected examples from the research on traditional, aqueous, and newer all-solid-state battery systems.

15.
Adv Mater ; 33(24): e2100585, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955614

RESUMO

The future of mobility depends on the development of next-generation battery technologies, such as all-solid-state batteries. As the ionic conductivity of solid Li+ -conductors can, in some cases, approach that of liquid electrolytes, a significant remaining barrier faced by solid-state electrolytes (SSEs) is the interface formed at the anode and cathode materials, with chemical instability and physical resistances arising. The physical properties of space charge layers (SCLs), a widely discussed phenomenon in SSEs, are still unclear. In this work, spectroscopic ellipsometry is used to characterize the accumulation and depletion layers. An optical model is developed to quantify their thicknesses and corresponding concentration changes. It is shown that the Li+ -depleted layer (≈190 nm at 1 V) is thinner than the accumulation layer (≈320 nm at 1 V) in a glassy lithium-ion-conducting glass ceramic electrolyte (a trademark of Ohara Corporation). The in situ approach combining electrochemistry and optics resolves the ambiguities around SCL formation. It opens up a wide field of optical measurements on SSEs, allowing various experimental studies in the future.

16.
Chemistry ; 27(39): 10016-10020, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34050569

RESUMO

The influence of electrolyte pH, the presence of alkali metal cations (Na+ , K+ ), and the presence of O2 on the interfacial water structure of polycrystalline gold electrodes has been experimentally studied in detail. The potential of maximum entropy (PME) was determined by the laser-induced current transient (LICT) technique. Our results demonstrate that increasing the electrolyte pH and introducing O2 shift the PME to more positive potentials. Interestingly, the PME exhibits a higher sensitivity to the pH change in the presence of K+ than Na+ . Altering the pH of the K2 SO4 solution from 4 to 6 can cause a drastic shift in the PME. These findings reveal that, for example, K2 SO4 and Na2 SO4 cannot be considered as equal supporting electrolytes: it is not a viable assumption. This can likely be extrapolated to other common "inert" supporting electrolytes. Beyond this, knowledge about the near-ideal electrolyte composition can be used to optimize electrochemical devices such as electrolyzers, fuel cells, batteries, and supercapacitors.

17.
Phys Chem Chem Phys ; 23(16): 10051-10058, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871000

RESUMO

Carbon is ubiquitous as an electrode material in electrochemical energy conversion devices. If used as a support material, the evolution of H2 is undesired on carbon. However, recently, carbon-based materials have aroused significant interest as economic and eco-conscious alternatives to noble metal catalysts. The targeted design of improved carbon electrode materials requires atomic scale insight into the structure of the sites that catalyse H2 evolution. This work shows that electrochemical scanning tunnelling microscopy under reaction conditions (n-EC-STM) can be used to monitor the active sites of highly oriented pyrolytic graphite for the hydrogen evolution reaction. With down to atomic resolution, the most active sites in acidic medium are pinpointed near edge sites and defects, whereas the basal planes remain inactive. Density functional theory calculations support these findings and reveal that only specific defects on graphite are active. Motivated by these results, the extensive usage of n-EC-STM on doped carbon-based materials is encouraged to locate their active sites and guide the synthesis of enhanced electrocatalysts.

18.
J Phys Chem C Nanomater Interfaces ; 125(9): 5020-5028, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33828636

RESUMO

Copper (Cu) is a unique electrocatalyst, which is able to efficiently oxidize CO at very low overpotentials and reduce CO2 to valuable fuels with reasonable Faradaic efficiencies. Yet, knowledge of its electrochemical properties at the solid/liquid interface is still scarce. Here, we present the first two-stranded correlation of the potential of zero free charge (pzfc) of Cu(111) in alkaline electrolyte at different pH values through application of nanosecond laser pulses and the corresponding interfacial structure changes by in situ electrochemical scanning tunneling microscopy imaging. The pzfc of Cu(111) at pH 13 is identified at -0.73 VSHE in the apparent double layer region, prior to the onset of hydroxide adsorption. It shifts by (88 ± 4) mV to more positive potentials per decreasing pH unit. At the pzfc, Cu(111) shows structural dynamics at both pH 13 and pH 11, which can be understood as the onset of surface restructuring. At higher potentials, full reconstruction and electric field dependent OH adsorption occurs, which causes a remarkable decrease in the atomic density of the first Cu layer. The expansion of the Cu-Cu distance to 0.3 nm generates a hexagonal Moiré pattern, on which the adsorbed OH forms a commensurate (1 × 2) adlayer structure with a steady state coverage of 0.5 monolayers at pH 13. Our experimental findings shed light on the true charge distribution and its interrelation with the atomic structure of the electrochemical interface of Cu.

19.
ACS Appl Mater Interfaces ; 13(4): 5853-5860, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492942

RESUMO

For years, the space charge layer formation in Li-conducting solid electrolytes and its relevance to so-called all solid-state batteries have been controversially discussed from experimental and theoretical perspectives. In this work, we observe the phenomenon of space charge layer formation using impedance spectroscopy at different electrode polarizations. We analyze the properties of these space charge layers using a physical equivalent circuit describing the response of the solid electrolytes and solid/solid electrified interfaces under blocking conditions. The elements corresponding to the interfacial layers are identified and analyzed with different electrode metals and applied biases. The effective thickness of the space charge layer was calculated to be ∼60 nm at a bias potential of 1 V. In addition, it was possible to estimate the relative permittivity of the electrolytes, specific resistance of the space charge layer, and the effective thickness of the electric double layer (∼0.7 nm).

20.
Angew Chem Int Ed Engl ; 59(27): 10934-10938, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32142192

RESUMO

Herein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni-Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm-2 in H2 -saturated 0.1 m KOH is reduced for the model single-crystal electrodes down to about 70 mV. To our knowledge, these modified electrodes outperform any other reported electrocatalysts tested under similar conditions. Moreover, the influence of 1) Ni to Fe ratio, 2) cluster coverage, and 3) the nature of the alkali-metal cations present in the electrolyte on the HER activity has been investigated. The observed catalytic performance likely originates from both the improved water dissociation at the Ni-Fe clusters and the subsequent optimal hydrogen adsorption and recombination at Pt atoms present at the Ni-Fe/Pt boundary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA