Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677517

RESUMO

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Assuntos
Mecanotransdução Celular , Interferência de RNA , Receptores Acoplados a Proteínas G/fisiologia , Animais , Materiais Biocompatíveis , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistência ao Cisalhamento , Estresse Mecânico , Resistência Vascular
2.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576450

RESUMO

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Assuntos
Anemia Hemolítica Congênita/patologia , População Negra/genética , Hidropisia Fetal/patologia , Canais Iônicos/genética , Malária/patologia , Alelos , Anemia Hemolítica Congênita/genética , Animais , Desidratação , Modelos Animais de Doenças , Eritrócitos/citologia , Eritrócitos/metabolismo , Deleção de Genes , Genótipo , Humanos , Hidropisia Fetal/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais Iônicos/química , Malária/genética , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Linfócitos T/citologia , Linfócitos T/metabolismo
3.
Nat Commun ; 6: 8329, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26387913

RESUMO

Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.


Assuntos
Anemia Hemolítica Congênita/metabolismo , Hidropisia Fetal/metabolismo , Canais Iônicos/metabolismo , Doenças Linfáticas/metabolismo , Sequência de Aminoácidos , Anemia Hemolítica Congênita/genética , Pré-Escolar , Eritrócitos/metabolismo , Feminino , Genes Recessivos , Humanos , Hidropisia Fetal/genética , Lactente , Canais Iônicos/química , Canais Iônicos/genética , Doenças Linfáticas/genética , Masculino , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Alinhamento de Sequência
4.
Elife ; 42015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26001274

RESUMO

Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis.


Assuntos
Cálcio/metabolismo , Eritrócitos/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Western Blotting , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Contagem de Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Citometria de Fluxo , Fluorescência , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Mutação/genética , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Elife ; 42015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26001275

RESUMO

Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ~3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function.


Assuntos
Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Camundongos
6.
Proc Natl Acad Sci U S A ; 111(28): 10347-52, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958852

RESUMO

Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.


Assuntos
Sistema Cardiovascular/embriologia , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Animais , Sistema Cardiovascular/citologia , Células Endoteliais/citologia , Canais Iônicos/genética , Camundongos , Camundongos Transgênicos
7.
Neuron ; 82(5): 1017-31, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24814535

RESUMO

Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutations that are individually sufficient to make mouse TRPA1 warm activated, while leaving sensitivity to chemicals unaffected. Mutant channels have high temperature sensitivity of voltage activation, specifically of channel opening, but not channel closing, which is reminiscent of other heat-activated TRP channels. All mutations are located in ankyrin repeat six, which identifies this domain as a sensitive modulator of thermal activation. We propose that a change in the coupling of temperature sensing to channel gating generates this sensitivity to warm temperatures. Our results demonstrate that minimal changes in protein sequence are sufficient to generate a wide diversity of thermal sensitivities in TRPA1.


Assuntos
Repetição de Anquirina/genética , Mutação Puntual , Temperatura , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Drosophila , Camundongos , Dados de Sequência Molecular , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
8.
Nat Commun ; 4: 1884, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23695678

RESUMO

Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.


Assuntos
Anemia Hemolítica Congênita/genética , Hidropisia Fetal/genética , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Fenômenos Biomecânicos , Criança , Análise Mutacional de DNA , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Cinética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Proteínas Recombinantes/metabolismo , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 110(12): 4667-72, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487782

RESUMO

Mechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. Electrophysiological studies reveal that the two PIEZO2 mutations affect biophysical properties related to channel inactivation: both E2727del and I802F mutations cause the PIEZO2-dependent, mechanically activated currents to recover faster from inactivation, while E2727del also causes a slowing of inactivation. Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.


Assuntos
Artrogripose , Doenças Genéticas Inatas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular/genética , Mutação , Adulto , Artrogripose/genética , Artrogripose/metabolismo , Artrogripose/patologia , Artrogripose/fisiopatologia , Linhagem Celular , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino
11.
Nat Neurosci ; 13(6): 708-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20414199

RESUMO

TRPV1 is the founding and best-studied member of the family of temperature-activated transient receptor potential ion channels (thermoTRPs). Voltage, chemicals and heat allosterically gate TRPV1. Molecular determinants of TRPV1 activation by capsaicin, allicin, acid, ammonia and voltage have been identified. However, the structures and mechanisms mediating TRPV1's pronounced temperature sensitivity remain unclear. Recent studies of the related channel TRPV3 identified residues in the pore region that are required for heat activation. We used both random and targeted mutagenesis screens of rat TRPV1 and identified point mutations in the outer pore region that specifically impair temperature activation. Single-channel analysis indicated that TRPV1 mutations disrupted heat sensitivity by ablating long channel openings, which are part of the temperature-gating pathway. We propose that sequential occupancy of short and long open states on activation provides a mechanism for enhancing temperature sensitivity. Our results suggest that the outer pore is important for the heat sensitivity of thermoTRPs.


Assuntos
Ativação do Canal Iônico , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Temperatura , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Cinética , Potenciais da Membrana , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Técnicas de Patch-Clamp , Mutação Puntual , Probabilidade , Estabilidade Proteica , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPV/genética
12.
Nat Chem Biol ; 5(3): 183-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19202543

RESUMO

Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.


Assuntos
Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Zinco/toxicidade , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Dor/induzido quimicamente , Conformação Proteica , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia , Zinco/farmacocinética
13.
J Neurosci ; 29(1): 153-8, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19129393

RESUMO

Maintaining physiological pH is required for survival, and exposure to alkaline chemicals such as ammonia (smelling salts) elicits severe pain and inflammation through unknown mechanisms. TRPV1, the capsaicin receptor, is an integrator of noxious stimuli including heat and extracellular acidic pH. Here, we report that ammonia activates TRPV1, TRPA1 (another polymodal nocisensor), and other unknown receptor(s) expressed in sensory neurons. Ammonia and intracellular alkalization activate TRPV1 through a mechanism that involves a cytoplasmic histidine residue, not used by other TRPV1 agonists such as heat, capsaicin or low pH. Our studies show that TRPV1 detects both acidic and basic deviations from homeostatic pH.


Assuntos
Ácidos/farmacologia , Cloreto de Amônio/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Capsaicina/farmacologia , Linhagem Celular Transformada , Gânglios Espinais/citologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Mutagênese Sítio-Dirigida/métodos , Técnicas de Patch-Clamp , Pirazinas/farmacologia , Piridinas/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Transfecção/métodos
14.
Proc Natl Acad Sci U S A ; 106(5): 1626-31, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164517

RESUMO

Temperature-activated transient receptor potential ion channels (thermoTRPs) are polymodal detectors of various stimuli including temperature, voltage, and chemicals. To date, it is not known how TRP channels integrate the action of such disparate stimuli. Identifying specific residues required for channel-activation by distinct stimuli is necessary for understanding overall TRP channel function. TRPV3 is activated by warm temperatures and various chemicals, and is modulated by voltage. One potent activator of TRPV3 is 2-aminoethyl diphenylborinate (2-APB), a synthetic chemical that modulates many TRP channels. In a high-throughput mutagenesis screen of approximately 14,000 mutated mouse TRPV3 clones, we found 2 residues (H426 and R696) specifically required for sensitivity of TRPV3 to 2-APB, but not to camphor or voltage. The cytoplasmic N-terminal mutation H426N in human, dog, and frog TRPV3 also effectively abolished 2-APB activation without affecting camphor responses. Interestingly, chicken TRPV3 is weakly sensitive to 2-APB, and the equivalent residue at 426 is an asparagine (N). Mutating this residue to histidine induced 2-APB sensitivity of chicken TRPV3 to levels comparable for other TRPV3 orthologs. The cytoplasmic C-terminal mutation R696K in the TRP box displayed 2-APB specific deficits only in the presence of extracellular calcium, suggesting involvement in gating. TRPV4, a related thermoTRP, is 2-APB insensitive and has variant sequences at both residues identified here. Remarkably, mutating these 2 residues in TRPV4 to TRPV3 sequences (N426H and W737R) was sufficient to induce TRPV3-like 2-APB sensitivity. Therefore, 2-APB activation of TRPV3 is separable from other activation mechanisms, and depends on 2 cytoplasmic residues.


Assuntos
Compostos de Boro/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Cálcio/metabolismo , Linhagem Celular , Primers do DNA , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Temperatura
15.
Cell ; 139(7): 1224-6, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064368

RESUMO

The itch sensation results from the excitation of primary sensory nerve endings in the skin, but the underlying molecular mechanisms are not completely understood. Liu et al. (2009) now report that some members of the Mrgpr class of G protein-coupled receptors mediate the itch caused by the antimalarial drug chloroquine.


Assuntos
Prurido/fisiopatologia , Animais , Antimaláricos/efeitos adversos , Cloroquina/efeitos adversos , Humanos , Dor/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Pele/inervação
16.
Nat Neurosci ; 11(9): 1007-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19160498

RESUMO

Ion channels can be activated (gated) by a variety of stimuli, including chemicals, voltage, mechanical force or temperature. Although molecular mechanisms of ion channel gating by chemical and voltage stimuli are understood in principal, the mechanisms of temperature activation remain unknown. The transient receptor potential channel TRPV3 is a nonselective cation channel that is activated by warm temperatures and sensory chemicals such as camphor. Here we screened approcimately 14,000 random mutant clones of mouse TRPV3 and identified five single point mutations that specifically abolish heat activation but do not perturb chemical activation or voltage modulation. Notably, all five mutations are located in the putative sixth transmembrane helix and the adjacent extracellular loop in the pore region of mouse TRPV3. Although distinct in sequence, we found that the corresponding loop of frog TRPV3 is also specifically required for heat activation. These findings demonstrate that the temperature sensitivity of TRPV3 is separable from all other known activation mechanisms and implicate a specific region in temperature sensing.


Assuntos
Temperatura Alta , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/fisiologia , Animais , Biofísica , Compostos de Boro/farmacologia , Linhagem Celular Transformada , Clonagem Molecular , Estimulação Elétrica , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Modelos Moleculares , Mutação/fisiologia , Técnicas de Patch-Clamp , Canais de Cátion TRPV/genética , Transfecção/métodos , Xenopus/genética
17.
Mol Pain ; 3: 40, 2007 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-18086313

RESUMO

Mechanical hyperalgesia is a clinically-relevant form of pain sensitization that develops through largely unknown mechanisms. TRPA1, a Transient Receptor Potential ion channel, is a sensor of pungent chemicals that may play a role in acute noxious mechanosensation and cold thermosensation. We have developed a specific small molecule TRPA1 inhibitor (AP18) that can reduce cinnameldehyde-induced nociception in vivo. Interestingly, AP18 is capable of reversing CFA-induced mechanical hyperalgesia in mice. Although TRPA1-deficient mice develop normal CFA-induced hyperalgeisa, AP18 is ineffective in the knockout mice, consistent with an on-target mechanism. Therefore, TRPA1 plays a role in sensitization of nociception, and that compensation in TRPA1-deficient mice masks this requirement.


Assuntos
Hiperalgesia/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Bradicinina/efeitos adversos , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Cricetinae , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Transfecção/métodos , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética , Xenopus
18.
Curr Opin Neurobiol ; 17(4): 490-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17706410

RESUMO

Six highly temperature-sensitive ion channels of the transient receptor potential (TRP) family have been implicated to mediate temperature sensation. These channels, expressed in sensory neurons innervating the skin or the skin itself, are active at specific temperatures ranging from noxious cold to burning heat. In addition to temperature sensation thermoTRPs are the receptors of a growing number of environmental chemicals (chemesthesis). Recent studies have provided some striking new insights into the molecular mechanism of thermal and chemical activation of these biological thermometers.


Assuntos
Células Quimiorreceptoras/fisiologia , Termorreceptores/fisiologia , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Humanos , Modelos Moleculares , Canais de Potencial de Receptor Transitório/classificação
19.
Biochemistry ; 45(30): 9007-15, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16866345

RESUMO

Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that catabolizes several bioactive lipids in vivo. Most of the physiological substrates of FAAH characterized to date belong to the N-acyl ethanolamine (NAE) class of fatty acid amides, including the endocannabinoid anandamide, the anti-inflammatory lipid N-palmitoyl ethanolamine, and the satiating factor N-oleoyl ethanolamine. We recently identified a second structural class of fatty acid amides regulated by FAAH in vivo: the N-acyl taurines (NATs). Global metabolite profiling revealed high concentrations of long chain (> or = C20) saturated NATs in the central nervous system (CNS) of FAAH(-/-) mice. Here, we use metabolite profiling to characterize the FAAH-NAT system in peripheral mouse tissues. Livers and kidneys of FAAH(-/-) mice possessed dramatic elevations in NATs, which, in contrast to those detected in the CNS, were enriched in polyunsaturated acyl chains (e.g., C20:4, C22:6). Peripheral NATs rose more than 10-fold within 1 h following pharmacological inactivation of FAAH and reached levels up to approximately 5000 pmol/g tissue (C22:6 in kidney), implicating a constitutive and highly active pathway for NAT metabolism in which FAAH plays an integral part. Interestingly, NATs were found to activate multiple members of the transient receptor potential (TRP) family of calcium channels, including TRPV1 and TRPV4, which are both expressed in kidney. The dramatic elevation in endogenous levels of NATs following acute or chronic inactivation of FAAH, in conjunction with the pharmacological effects of these lipids on TRP channels, suggests the existence of a second major lipid signaling system regulated by FAAH in vivo.


Assuntos
Amidoidrolases/química , Canais de Cátion TRPV/metabolismo , Taurina/análogos & derivados , Taurina/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Benzamidas/administração & dosagem , Células CHO , Carbamatos/administração & dosagem , Cricetinae , Inibidores Enzimáticos/administração & dosagem , Camundongos , Camundongos Knockout , Canais de Cátion TRPV/química , Taurina/fisiologia , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
20.
Nat Neurosci ; 9(4): 493-500, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16520735

RESUMO

Menthol is a cooling compound derived from mint leaves and is extensively used as a flavoring chemical. Menthol activates transient receptor potential melastatin 8 (TRPM8), an ion channel also activated by cold, voltage and phosphatidylinositol-4,5-bisphosphate (PIP2). Here we investigated the mechanism by which menthol activates mouse TRPM8. Using a new high-throughput approach, we screened a random mutant library consisting of approximately 14,000 individual TRPM8 mutants for clones that are affected in their response to menthol while retaining channel function. We identified determinants of menthol sensitivity in two regions: putative transmembrane segment 2 (S2) and the C-terminal TRP domain. Analysis of these mutants indicated that activation by menthol involves a gating mechanism distinct and separable from gating by cold, voltage or PIP2. Notably, TRP domain mutations mainly attenuated menthol efficacy, suggesting that this domain influences events downstream of initial binding. In contrast, S2 mutations strongly shifted the concentration dependence of menthol activation, raising the possibility that S2 influences menthol binding.


Assuntos
Temperatura Baixa , Mentol/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Biblioteca Gênica , Mentol/química , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Pirimidinonas/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA