Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Curr Top Membr ; 92: 47-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007269

RESUMO

Voltage-gated sodium channels (Nav) are protein complexes that play fundamental roles in the transmission of signals in the nervous system, at the neuromuscular junction and in the heart. They are mainly present in excitable cells where they are responsible for triggering action potentials. Dysfunctions in Nav ion conduction give rise to a wide range of conditions, including neurological disorders, hypertension, arrhythmia, pain and cancer. Nav family 1 is composed of nine members, named numerically from 1 to 9. A Nax family also exists and is involved in body-fluid homeostasis. Of particular interest is Nav1.7 which is highly expressed in the sensory neurons of the dorsal root ganglions, where it is involved in the propagation of pain sensation. Gain-of-function mutations in Nav1.7 cause pathologies associated with increased pain sensitivity, while loss-of-function mutations cause reduced sensitivity to pain. The last decade has seen considerable effort in developing highly specific Nav1.7 blockers as pain medications, nonetheless, sufficient efficacy has yet to be achieved. Evidence is now conclusively showing that Navs are also present in many types of cancer cells, where they are involved in cell migration and invasiveness. Nav1.7 is anomalously expressed in endometrial, ovarian and lung cancers. Nav1.7 is also involved in Chemotherapy Induced Peripheral Neuropathy (CIPN). We propose that the knowledge and tools developed to study the role of Nav1.7 in pain can be exploited to develop novel cancer therapies. In this chapter, we illustrate the various aspects of Nav1.7 function in pain, cancer and CIPN, and outline therapeutic approaches.


Assuntos
Neoplasias , Canais de Sódio Disparados por Voltagem , Humanos , Dor/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Neoplasias/metabolismo
2.
Rev Physiol Biochem Pharmacol ; 183: 135-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34291318

RESUMO

Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.


Assuntos
Neoplasias , Potássio , Canais de Cloreto/metabolismo , Canais de Cloreto/uso terapêutico , Cloretos/metabolismo , Cloretos/uso terapêutico , Humanos , Canais Iônicos , Neoplasias/genética , Potássio/metabolismo
3.
Curr Eye Res ; 47(3): 426-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34674590

RESUMO

PURPOSE: Retinoblastoma is the most frequent intraocular cancer in children. It is also one of the most common causes for enucleation and carries a significant morbidity rate in affected individuals. Hence, studies on its pathophysiological and growth regulatory mechanisms are urgently needed to identify more effective novel therapeutics. METHODS: Using the Y79 retinoblastoma cell line, we investigated the electrophysiological and functional activities of the T-type voltage-gated calcium channel Cav3.1, that is constitutively expressed in these cells. We also analyzed the Akt and MAPK signaling pathways downstream of the epidermal growth factor receptor (EGFR) to understand the mechanism responsible for the inhibition of Cav3.1. RESULTS: We demonstrate that the EGFR inhibitor Afatinib significantly reduced cell viability and Cav3.1 mRNA expression and electrophysiological activity. At low concentrations (1 µM), Afatinib reduced the amplitude of Cav3.1 current density, whereas at a high concentration (10 µM), it completely abolished the voltage-gated calcium current. Our results show that inhibition of the MAPK pathway by a specific inhibitor VX-11e affected the Cav3.1 current in a dose-dependent manner. VX-11e (50 nM-1 µM) treatment reduced Cav3.1 current densities in Y79 cells, with complete abolishment of Cav3.1 current at higher concentrations (5 µM). We also demonstrate that the specific inhibition of the Akt kinase (using MK-2206) had no effect on the Cav3.1 currents. CONCLUSION: Our study provides a functional relationship between the MAPK pathway and EGFR signaling and indicates that the MAPK signaling pathway mediates the control of Cav3.1 by EGFR in retinoblastoma.


Assuntos
Canais de Cálcio Tipo T , Receptores ErbB , Sistema de Sinalização das MAP Quinases , Neoplasias da Retina , Retinoblastoma , Afatinib , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico
4.
Stem Cell Rev Rep ; 18(1): 259-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687385

RESUMO

Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs). Functional assessments were performed by evaluating electrophysiological (patch-clamp) properties and the effect of a panel of neuropharmacological agents on spontaneous activity (multi-electrode arrays; MEAs). These electrophysiological data were benchmarked relative to commercially sourced human iPSC-derived neurons (CNS.4U from Ncardia), primary human neurons (ScienCell™) and primary rodent cortical/hippocampal neurons. Patch-clamp whole-cell recordings showed that mature AF-iNs generated repetitive firing of action potentials in response to depolarizations, similar to that of primary rodent cortical/hippocampal neurons, with nearly half of the neurons displaying spontaneous post-synaptic currents. Immunochemical and MEA-based analyses indicated that AF-iNs were composed of functional glutamatergic excitatory and inhibitory GABAergic neurons. Principal component analysis of MEA data indicated that human AF-iN and rat neurons exhibited distinct pharmacological and electrophysiological properties. Collectively, this study establishes a necessary prerequisite for AF-iNs as a human neuron culture model suitable for pharmacological studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Benchmarking , Fenômenos Eletrofisiológicos , Humanos , Neurônios , Ratos , Roedores
5.
Genetics ; 215(4): 1055-1066, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554600

RESUMO

Dravet syndrome is a developmental epileptic encephalopathy caused by pathogenic variation in SCN1A To characterize the pathogenic substitution (p.H939R) of a local individual with Dravet syndrome, fibroblast cells from the individual were reprogrammed to pluripotent stem cells and differentiated into neurons. Sodium currents of these neurons were compared with healthy control induced neurons. A novel Scn1aH939R/+ mouse model was generated with the p.H939R substitution. Immunohistochemistry and electrophysiological experiments were performed on hippocampal slices of Scn1aH939R/+ mice. We found that the sodium currents recorded in the proband-induced neurons were significantly smaller and slower compared to wild type (WT). The resting membrane potential and spike amplitude were significantly depolarized in the proband-induced neurons. Similar differences in resting membrane potential and spike amplitude were observed in the interneurons of the hippocampus of Scn1aH939R/+ mice. The Scn1aH939R/+ mice showed the characteristic features of a Dravet-like phenotype: increased mortality and both spontaneous and heat-induced seizures. Immunohistochemistry showed a reduction in amount of parvalbumin and vesicular acetylcholine transporter in the hippocampus of Scn1aH939R/+ compared to WT mice. Overall, these results underline hyper-excitability of the hippocampal CA1 circuit of this novel mouse model of Dravet syndrome which, under certain conditions, such as temperature, can trigger seizure activity. This hyper-excitability is due to the altered electrophysiological properties of pyramidal neurons and interneurons which are caused by the dysfunction of the sodium channel bearing the p.H939R substitution. This novel Dravet syndrome model also highlights the reduction in acetylcholine and the contribution of pyramidal cells, in addition to interneurons, to network hyper-excitability.


Assuntos
Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/patologia , Fibroblastos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/patologia , Células Piramidais/patologia , Animais , Região CA1 Hipocampal/metabolismo , Eletrofisiologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Células Piramidais/metabolismo
6.
Channels (Austin) ; 10(2): 148-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26632350

RESUMO

Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment.


Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Cátion TRPV/metabolismo , Canadá , Estudos de Casos e Controles , Diferenciação Celular , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Células-Tronco Mesenquimais/patologia , Análise em Microsséries , Osteoartrite/metabolismo , Osteoartrite/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Cultura Primária de Células , Líquido Sinovial/citologia , Líquido Sinovial/metabolismo , Canais de Cátion TRPV/genética
7.
J Neurooncol ; 107(1): 111-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21971736

RESUMO

The central nervous system Atypical Teratoid/Rhabdoid Tumor (CNS AT/RT) is a highly malignant neoplasm that commonly affects infants and young children, and has an extremely poor prognosis. Recently, a small subset of ion channels have been found to be over-expressed in a variety of malignant cells, thus emerging as potential therapeutic targets for difficult to treat tumors. We have studied the electrophysiological properties of AT/RT cell lines with particular attention to cell volume sensitive ion channels (VSC). This class of membrane proteins can play a fundamental role in cellular processes relevant to tumor development. We have found that chloride selective VSCs are particularly active in AT/RT cell lines, compared to non-tumor cells. We evaluated specific inhibitors for activity against chloride selective VSCs and consequently for their ability to inhibit the growth and survival of AT/RT cells in vitro. The results demonstrated that the extent of volume sensitive membrane current inhibition by these agents was correlated with their potency in AT/RT cell growth inhibition in vitro. In addition, we showed that ion channel inhibition enhanced the activity of certain anti-neoplastic agents, suggesting its value in effective drug combination protocols. Results presented provide preliminary in vitro data for possible evaluation of distinct ion channels as plausible therapeutic targets in the treatment of AT/RT.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Canais de Cloreto/metabolismo , Canais de Potássio/metabolismo , Tumor Rabdoide/metabolismo , Teratoma/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Canais de Cloreto/antagonistas & inibidores , Quimioterapia Combinada , Eletrofisiologia , Glibureto/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ácido Niflúmico/farmacologia , Canais de Potássio/química , Tumor Rabdoide/tratamento farmacológico , Teratoma/tratamento farmacológico
8.
Cell Physiol Biochem ; 28(6): 1169-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179005

RESUMO

Acute Myeloid Leukemia (AML) accounts for approximately one fifth of all childhood leukemia yet is responsible for a significant proportion of morbidity and mortality in this population. For this reason, research to identify novel targets for the development of effective AML therapeutics has intensified in the recent past. The THP-1 cell line, which was originally established from an infant diagnosed with AML, provides an experimental model for functional, pre-clinical therapeutics and target identification studies of AML. Here we show the expression of the voltage gated potassium channel Kv11.1 in THP-1 cells as opposed to normal hematopoietic stem cells. In addition, curcumin, a natural polyphenol derived from the plant Curcuma longa, effectively blocked Kv11.1 activity and also inhibited the proliferation of these cells. Curcumin was rapidly internalized by THP-1 cells and possibly exerts potential growth inhibitory activity by interacting with intracellular epitopes of the ion channel. Inhibition of ionic currents carried by Kv11.1 resulted in depolarization of cell membrane potential. We propose that the inhibition of Kv11.1 activity by curcumin may lead to interference with leukemic cell physiology and consequently the suppression of survival and proliferation of AML cells.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Potássio/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular , Proliferação de Células , Curcuma/química , Curcumina/uso terapêutico , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/fisiologia , Humanos , Lactente , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia
9.
Channels (Austin) ; 5(6): 530-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829090

RESUMO

The resting membrane potential, E(m), of mammalian cells is a fundamental physiological parameter. Even small changes in E(m) can modulate excitability, contractility and rates of cell migration. At present accurate, reproducible measurements of E(m) and determination of its ionic basis remain significant challenges when patch clamp methods are applied to small cells. In this study, a mathematical model has been developed which incorporates many of the main biophysical principles which govern recordings of the resting potential of 'small cells'. Such a prototypical cell (approx. capacitance, 6 pF; input resistance 5 GΩ) is representative of neonatal cardiac myocytes, and other cells in the cardiovascular system (endothelium, fibroblasts) and small cells in other tissues, e.g. bone (osteoclasts) articular joints (chondrocytes) and the pancreas (ß cells). Two common experimental conditions have been examined: (1) when the background K(+) conductance is linear; and (2) when this K(+) conductance is highly nonlinear and shows pronounced inward rectification. In the case of a linear K(+) conductance, the presence of a "leakage" current through the seal resistance between the cell membrane and the patch pipette always depolarizes E(m). Our calculations confirm that accurate characterization of E(m) is possible when the seal resistance is at least 5 times larger than the input resistance of the targeted cell. Measurement of E(m) under conditions in which the main background current includes a markedly nonlinear K(+) conductance (due to inward rectification) yields complex and somewhat counter-intuitive findings. In fact, there are at least two possible stable values of resting membrane potential for a cell when the nonlinear, inwardly rectifying K(+) conductance interacts with the seal current. This type of bistable behavior has been reported in a variety of small mammalian cells, including those from the heart, endothelium, smooth muscle and bone. Our theoretical treatment of these two common experimental situations provides useful mechanistic insights, and suggests practical methods by which these significant limitations, and their impact, can be minimized.


Assuntos
Potenciais da Membrana/fisiologia , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Células Cultivadas , Humanos , Miócitos Cardíacos/citologia , Coelhos
11.
Channels (Austin) ; 4(1): 12-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20090423

RESUMO

The presence of two slowly inactivating mutants of the cardiac sodium channel (hNa(V)1.5), R1623Q and R1626P, associate with sporadic Long-QT3 (LQT3) syndrome, and may contribute to ventricular tachyarrhythmias and/or lethal ventricular disturbances. Cardiac mechanoelectric feedback is considered a factor in such sporadic arrhythmias. Since stretch and shear forces modulate hNa(V)1.5 gating, detailed electrophysiological study of LQT-Na(V)1.5 mutant channel alpha subunit(s) might provide insights. We compared recombinant R1623Q and WT currents in control vs. stretched membrane of cell-attached patches of Xenopus oocytes. Macroscopic current was monitored before, during, and after stretch induced by pipette suction. In either mutant Na(+) channel, peak current at small depolarizations could be more than doubled by stretch. As in WT, R1623Q showed reversible and stretch intensity dependent acceleration of current onset and decay at all voltages, with kinetic coupling between these two processes retained during stretch. These two Na(V)1.5 channel alpha subunits differed in the absolute extent of kinetic acceleration for a given stretch intensity; over a range of intensities, R1623Q inactivation speed increased significantly less than did WT. The LQT3 mutant R1626P also retained its kinetic coupling during stretch. Whereas WT stretch-difference currents (I(Na)(V,t) without stretch minus I(Na)(V,t) with stretch) were mostly inhibitory (equivalent to outward current), they were substantially (R1623Q) or entirely (R1626P) excitatory for the LQT3 mutants. If stretch-modulated Na(V)1.5 current (i.e., brief excitation followed by accelerated current decay) routinely contributes to cardiac mechanoelectric feedback, then during hemodynamic load variations, the abnormal stretch-modulated components of R1623Q and R1626P current could be pro-arrhythmic.


Assuntos
Ativação do Canal Iônico , Síndrome do QT Longo/metabolismo , Mecanotransdução Celular , Proteínas Musculares/metabolismo , Mutação , Miocárdio/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Humanos , Cinética , Lantânio/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Potenciais da Membrana , Proteínas Musculares/genética , Canal de Sódio Disparado por Voltagem NAV1.5 , Oócitos , Técnicas de Patch-Clamp , Pressão , Proteínas Recombinantes/metabolismo , Canais de Sódio/genética , Xenopus laevis
12.
Am J Physiol Cell Physiol ; 297(4): C823-34, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19657055

RESUMO

During brain trauma, white matter experiences shear and stretch forces that, without severing axons, nevertheless trigger their secondary degeneration. In central nervous system (CNS) trauma models, voltage-gated sodium channel (Nav) blockers are neuroprotective. This, plus the rapid tetrodotoxin-sensitive Ca2+ overload of stretch-traumatized axons, points to "leaky" Nav channels as a pivotal early lesion in brain trauma. Direct effects of mechanical trauma on neuronal Nav channels have not, however, been tested. Here, we monitor immediate responses of recombinant neuronal Nav channels to stretch, using patch-clamp and Na+-dye approaches. Trauma constituted either bleb-inducing aspiration of cell-attached oocyte patches or abrupt uniaxial stretch of cells on an extensible substrate. Nav1.6 channel transient current displayed irreversible hyperpolarizing shifts of steady-state inactivation [availability(V)] and of activation [g(V)] and, thus, of window current. Left shift increased progressively with trauma intensity. For moderately intense patch trauma, a approximately 20-mV hyperpolarizing shift was registered. Nav1.6 voltage sensors evidently see lower energy barriers posttrauma, probably because of the different bilayer mechanics of blebbed versus intact membrane. Na+ dye-loaded human embryonic kidney (HEK) cells stably transfected with alphaNav1.6 were subjected to traumatic brain injury-like stretch. Cytoplasmic Na+ levels abruptly increased and the trauma-induced influx had a significant tetrodotoxin-sensitive component. Nav1.6 channel responses to cell and membrane trauma are therefore consistent with the hypothesis that mechanically induced Nav channel leak is a primary lesion in traumatic brain injury. Nav1.6 is the CNS node of Ranvier Nav isoform. When, during head trauma, nodes experienced bleb-inducing membrane damage of varying intensities, nodal Nav1.6 channels should immediately "leak" over a broadly left-smeared window current range.


Assuntos
Membrana Celular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/fisiologia , Sódio/metabolismo , Estresse Mecânico , Animais , Cátions Monovalentes , Linhagem Celular , Feminino , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6 , Oócitos/fisiologia , Técnicas de Patch-Clamp , Xenopus
13.
J Biol Chem ; 284(1): 389-403, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18996847

RESUMO

In this study we present evidence that residue Val282 in the S6 transmembrane segment of the calcium-activated KCa3.1 channel constitutes a key determinant of channel gating. A Gly scan of the S6 transmembrane segment first revealed that the substitutions A279G and V282G cause the channel to become constitutively active in zero Ca2+. Constitutive activity was not observed when residues extending from Cys276 to Ala286, other than Ala279 and Val282, were substituted to Gly. The accessibility of Cys engineered at Val275 deep in the channel cavity was next investigated for the ion-conducting V275C/V282G mutant and closed V275C channel in zero Ca2+ using Ag+ as probe. These experiments demonstrated that internal Ag+ ions have free access to the channel cavity independently of the channel conducting state, arguing against an activation gate located at the S6 segment C-terminal end. Experiments were also conducted where Val282 was substituted by residues differing in size and/or hydrophobicity. We found a strong correlation between constitutive activity in zero Ca2+ and the hydrophobic energy for side chain burial. Single channel recordings showed finally that constitutive activation in zero Ca2+ is better explained by a model where the channel is locked in a low conducting state with a high open probability rather than resulting from a change in the open/closed energy balance that would favor channel openings to a full conducting state in the absence of Ca2+. We conclude that hydrophobic interactions involving Val282 constitute key determinants to KCa3.1 gating by modulating the ion conducting state of the selectivity filter through an effect on the S6 transmembrane segment.


Assuntos
Substituição de Aminoácidos , Cálcio/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Prata/química , Animais , Cálcio/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Transporte de Íons/fisiologia , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Prata/metabolismo
14.
J Gen Physiol ; 129(4): 299-315, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353352

RESUMO

In this work we address the question of the KCa3.1 channel pore structure in the closed configuration in relation to the contribution of the C-terminal end of the S6 segments to the Ca(2+)-dependent gating process. Our results based on SCAM (substituted cysteine accessibility method) experiments first demonstrate that the S6 transmembrane segment of the open KCa3.1 channel contains two distinct functional domains delimited by V282 with MTSEA and MTSET binding leading to a total channel inhibition at positions V275, T278, and V282 and to a steep channel activation at positions A283 and A286. The rates of modification by MTSEA (diameter 4.6 A) of the 275C (central cavity) and 286C residues (S6 C-terminal end) for the closed channel configuration were found to differ by less than sevenfold, whereas experiments performed with the larger MTSET reagent (diameter 5.8 A) resulted in modification rates 10(3)-10(4) faster for cysteines at 286 compared with 275. Consistent with these results, the modification rates of the cavity lining 275C residue by MTSEA, Et-Hg(+), and Ag(+) appeared poorly state dependent, whereas modification rates by MTSET were 10(3) faster for the open than the closed configuration. A SCAM analysis of the channel inner vestibule in the closed state revealed in addition that cysteine residues at 286 were accessible to MTS reagents as large as MTS-PtrEA, a result supported by the observation that binding of MTSET to cysteines at positions 283 or 286 could neither sterically nor electrostatically block the access of MTSEA to the closed channel cavity (275C). It follows that the closed KCa3.1 structure can hardly be accountable by an inverted teepee-like structure as described for KcsA, but is better represented by a narrow passage centered at V282 (equivalent to V474 in Shaker) connecting the channel central cavity to the cytosolic medium. This passage would not be however restrictive to the diffusion of small reagents such as MTSEA, Et-Hg(+), and Ag(+), arguing against the C-terminal end of S6 forming an obstructive barrier to the diffusion of K(+) ions for the closed channel configuration.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ativação do Canal Iônico/fisiologia , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Cisteína/genética , Difusão , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indicadores e Reagentes/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Mesilatos/farmacologia , Modelos Químicos , Oócitos/fisiologia , Potássio/farmacologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Xenopus laevis
15.
J Gen Physiol ; 124(4): 333-48, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15452196

RESUMO

We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Biológicos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/fisiologia , Compostos de Amônio Quaternário/farmacologia , Animais , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Potássio/metabolismo
16.
J Biol Chem ; 279(8): 6853-62, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14630907

RESUMO

The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.


Assuntos
Canais de Cálcio/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Cálcio/química , Cisteína/química , DNA Complementar/metabolismo , Feminino , Íons , Isoleucina/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Técnicas de Patch-Clamp , Prolina/química , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Software , Canais de Cátion TRPV , Fatores de Tempo , Xenopus laevis
17.
J Gen Physiol ; 120(1): 99-116, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12084779

RESUMO

Cysteine-scanning mutagenesis (SCAM) and computer-based modeling were used to investigate key structural features of the S6 transmembrane segment of the calcium-activated K(+) channel of intermediate conductance IKCa. Our SCAM results show that the interaction of [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) with cysteines engineered at positions 275, 278, and 282 leads to current inhibition. This effect was state dependent as MTSET appeared less effective at inhibiting IKCa in the closed (zero Ca(2+) conditions) than open state configuration. Our results also indicate that the last four residues in S6, from A283 to A286, are entirely exposed to water in open IKCa channels, whereas MTSET can still reach the 283C and 286C residues with IKCa maintained in a closed state configuration. Notably, the internal application of MTSET or sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) caused a strong Ca(2+)-dependent stimulation of the A283C, V285C, and A286C currents. However, in contrast to the wild-type IKCa, the MTSET-stimulated A283C and A286C currents appeared to be TEA insensitive, indicating that the MTSET binding at positions 283 and 286 impaired the access of TEA to the channel pore. Three-dimensional structural data were next generated through homology modeling using the KcsA structure as template. In accordance with the SCAM results, the three-dimensional models predict that the V275, T278, and V282 residues should be lining the channel pore. However, the pore dimensions derived for the A283-A286 region cannot account for the MTSET effect on the closed A283C and A286 mutants. Our results suggest that the S6 domain extending from V275 to V282 possesses features corresponding to the inner cavity region of KcsA, and that the COOH terminus end of S6, from A283 to A286, is more flexible than predicted on the basis of the closed KcsA crystallographic structure alone. According to this model, closure by the gate should occur at a point located between the T278 and V282 residues.


Assuntos
Cisteína/genética , Modelos Biológicos , Modelos Genéticos , Mutagênese , Canais de Potássio Cálcio-Ativados/fisiologia , Animais , Computadores , Condutividade Elétrica , Feminino , Células HeLa , Humanos , Mesilatos/farmacologia , Oócitos , Canais de Potássio Cálcio-Ativados/genética , Homologia de Sequência , Reagentes de Sulfidrila/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA