Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 176: 113864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271022

RESUMO

Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.


Assuntos
Infecções Bacterianas/terapia , Terapia por Fagos , Animais , Bacteriófagos , Humanos
2.
Mater Sci Eng C Mater Biol Appl ; 124: 112072, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947564

RESUMO

Bioprinting of most cell-laden hydrogel scaffolds with the required structural integrity, mechanical modulus, cell adhesion, cell compatibility, and chondrogenic differentiation are still significant issues that affect the application of bioinks in cartilage tissue engineering. This study focuses on constructing printable bioinks by combining adipose-derived stem cells (ADSCs), hyaluronic acid (HA)-based hydrogels and analyzing their ability to induce chondrogenesis using 3D bioprinting technology. First, biotinylated hyaluronic acid was synthesized via an adipic acid dihydrazide (ADH) linker with amide bond formation to form HA-biotin (HAB). Both HAB and the as-received streptavidin were mixed to form a partially cross-linked HA-biotin-streptavidin (HBS) hydrogel through noncovalent bonding. After that, the partially cross-linked HBS hydrogel was mixed with sodium alginate and subsequently printed to form the HBSA hydrogel 3D scaffolds using a bioprinter. Finally, the 3D scaffolds of the HBSA (HBS + alginate) hydrogel were submerged into CaCl2 solution to achieve a stable 3D HBSAC (HBSA + Ca2+) hydrogel scaffold through ion transfer crosslinking. The physical-chemical characteristics of the hybrid bioink compositions have been evaluated to determine the desired 3D bioprinting structure. Cytotoxicity and chondrogenic differentiation were also assessed to confirm that the double cross-linked HBSAC hydrogel scaffold was useful for chondrogenic formation. The results showed that partially crosslinking the biotinylated HA-based hydrogel with streptavidin has a significant effect on printability and structural integrity. Morphological analysis of a suitable 3D printed HBSAC hydrogel scaffold showed visible pores with the desired shape and geometry. We have concluded that the HBSAC hydrogel possesses a favorable biocompatibility profile. The HBSAC hydrogel can also secrete significantly higher amounts of chondrogenic marker genes at day 5 and sulfated glycosaminoglycans (sGAGs) from days 7 to 14 compared to the HA hydrogel, as determined via quantitative real-time PCR assay and Alcian blue staining and the DMMB assay.


Assuntos
Bioimpressão , Condrogênese , Ácido Hialurônico , Hidrogéis , Impressão Tridimensional , Células-Tronco , Engenharia Tecidual , Alicerces Teciduais
3.
Int J Pharm ; 602: 120508, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766635

RESUMO

With the emergence of multidrug resistance (MDR) bacteria, wound infection continues to be a challenging problem and represents a considerable healthcare burden. This study aims to evaluate the applicability of a phage loaded thermosensitive hydrogel in managing wound infections caused by MDR Acinetobacter baumannii, using IME-AB2 phage and MDR-AB2 as the model phage and bacteria, respectively. Excellent storage stability of the IME-AB2 phage in a ~18 wt% Poloxamer 407 (P407) hydrogel solution was first demonstrated with negligible titer loss (~0.5 log) in 24 months at 4 °C. The incorporated phage was released in a sustained manner with a cumulative release of 60% in the first 24 h. The in vitro bacterial killing efficiency of phage gel and phage suspension at 37 °C demonstrated >5 log10 CFU/ml reduction against A. baumannii. A comparable biofilm elimination capacity was also noted between the phage gel and phage suspension (59% and 45% respectively). These results suggested that the incorporation of phage into the hydrogel not only had insignificant impacts on the bacterial killing efficiency of phage, but also act as a phage depot to maintain higher phage titer at the infectious site for a prolong period for more effective treatment. We also found that the hydrogel formulation significantly suppressed microbial survival in an ex vivo wound infection model using pig skin (90% reduction in bacterial counts was achieved after 4 h treatment). In summary, our results demonstrated that the P407-based phage-loaded thermosensitive hydrogel is a simple and promising phage formulation for the management of wound infections.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Infecção dos Ferimentos , Animais , Antibacterianos , Bandagens , Hidrogéis , Suínos , Infecção dos Ferimentos/terapia
4.
J Mater Chem B ; 8(37): 8507-8518, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32839803

RESUMO

Surgery is considered to be the favored approach for the treatment of most solid tumor malignancies. The quality of life among cancer patients has significantly improved due to advancements in instrumentation and surgical techniques; however, the recurrence of tumors and metastasis after operation remains challenging and results in a decreased quality of life and an increase in the mortality rate. Therefore, there is a need to explore applicable approaches to eradicate the circulating tumor cells and any residual tumor at the surgical site to inhibit the recurrence of the tumor and reduce the threat of distant metastasis. Recently drug delivery systems have been used to deliver immunotherapy or chemotherapy agents, which could augment the efficacy of surgical resection. In this review, we have summarized the efficacy and the recent progress of controlled drug delivery systems based approaches for post-surgical cancer treatment. Clinical translation challenges and opportunities have also been discussed.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Humanos , Hidrogéis/química , Micelas , Nanofibras/química
5.
Mol Ther Nucleic Acids ; 21: 1074-1086, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32854062

RESUMO

Aptamers are small, functional single-stranded DNA or RNA oligonucleotides that bind to their targets with high affinity and specificity. Experimentally, aptamers are selected by the systematic evolution of ligands by exponential enrichment (SELEX) method. Here, we have used rational drug designing and bioinformatics methods to design the aptamers, which involves three different steps. First, finding a probable aptamer-binding site, and second, designing the recognition and structural parts of the aptamers by generating a virtual library of sequences, selection of specific sequence via molecular docking, molecular dynamics (MD) simulation, binding energy calculations, and finally evaluating the experimental affinity. Following this strategy, a 16-mer DNA aptamer was designed for Annexin A1 (ANXA1). In a direct binding assay, DNA1 aptamer bound to the ANXA1 with dissociation constants value of 83 nM. Flow cytometry and fluorescence microscopy results also showed that DNA1 aptamer binds specifically to A549, HepG2, U-87 MG cancer cells that overexpress ANXA1 protein, but not to MCF7 and L-02, which are ANXA1 negative cells. We further developed a novel system by conjugating DNA1 aptamer with doxorubicin and its efficacy was studied by cellular uptake and cell viability assay. Also, anti-tumor analysis showed that conjugation of doxorubicin with aptamer significantly enhances targeted therapy against tumors while minimizing overall adverse effects on mice health.

6.
Front Pharmacol ; 11: 997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719604

RESUMO

With the advancement of technology, drug delivery systems and molecules with more complex architecture are developed. As a result, the drug absorption and disposition processes after administration of these drug delivery systems and engineered molecules become exceedingly complex. As the pharmacokinetic and pharmacodynamic (PK-PD) modeling allows for the separation of the drug-, carrier- and pharmacological system-specific parameters, it has been widely used to improve understanding of the in vivo behavior of these complex delivery systems and help their development. In this review, we summarized the basic PK-PD modeling theory in drug delivery and demonstrated how it had been applied to help the development of new delivery systems and modified large molecules. The linkage between PK and PD was highlighted. In particular, we exemplified the application of PK-PD modeling in the development of extended-release formulations, liposomal drugs, modified proteins, and antibody-drug conjugates. Furthermore, the model-based simulation using primary PD models for direct and indirect PD responses was conducted to explain the assertion of hypothetical minimal effective concentration or threshold in the exposure-response relationship of many drugs and its misconception. The limitations and challenges of the mechanism-based PK-PD model were also discussed.

7.
J Biomol Struct Dyn ; 38(10): 2916-2927, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31334690

RESUMO

Tyrosinase plays an important role in melanin biosynthesis and protects skin against ultraviolet radiations. Functional deficiency of tyrosinase results in serious dermatological diseases. Tyrosinase also participates in neuromelanin formation in the human brain, which leads to neurodegeneration resulting in Parkinson's disease. In fruits and vegetables, tyrosinase plays a critical role in senescence, causing undesired browning that results in faster deterioration and shorter shelf lines. The only commercially available tyrosinase is mushroom tyrosinase and it shows the highest homology to the mammalian tyrosinase. Although kojic acid is currently used as a tyrosinase inhibitor, they have serious side effects such as dermatitis, carcinogenesis and hepatotoxicity. Therefore, in order to develop a more active and safer tyrosinase inhibitor, 3D QSAR pharmacophore models were generated based on experimentally known inhibitors. The pharmacophore model, Hypo1, was developed with a large cost difference, high correlation coefficient and low RMS deviation. Hypo1 showed a good spatial arrangement; consisting of five-point features including two hydrogen bond acceptor, one hydrogen bond donor and two hydrophobic features. Hypo1 was further validated by cost analysis, test set and Fisher's randomisation method. Hypo1 was used as a 3D query for screening the in-house drug-like databases, and the hits were further selected by applying ADMET, Lipinski's rule of five and fit value criteria. To identify binding conformations, the obtained hits were subjected to molecular docking. Finally, molecular dynamics simulations revealed the appropriate binding modes of hit compounds. To conclude, we propose the final three hit compounds with new structural scaffolds as a virtual candidate as tyrosinase inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Monofenol Mono-Oxigenase , Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores
8.
J Biomed Mater Res A ; 107(12): 2643-2666, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31390141

RESUMO

For cancer therapy, the usefulness of mesoporous silica nanoparticles (MPSNPs) has been widely discussed, likely due to its inorganic nature and excellent structural features. The MPSNPs-based chemotherapeutics have been promisingly delivered to their target sites that help to minimize side effects and improve therapeutic effectiveness. A wide array of studies have been conducted to functionalize drug-loaded MPSNPs using targeting ligands and stimuli-sensitive substances. In addition, anticancer drugs have been precisely delivered to their target sites using MPSNPs, which respond to multi-stimuli. Furthermore, MPSNPs have been extensively tested for their safety and compatibility. The toxicity level of MPSNPs is substantially lower as compared to that of colloidal silica; however, in oxidative stress, they exhibit cytotoxic features. The biocompatibility of MPSNPs can be improved by modifying their surfaces. This article describes the production procedures, functionalization, and applications of biocompatible MPSNPs in drug delivery.


Assuntos
Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Animais , Humanos , Nanomedicina Teranóstica/métodos
9.
Colloids Surf B Biointerfaces ; 176: 185-193, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30616109

RESUMO

Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for drug delivery. However, a facile method to synthesize HMSNs has hardly been reported so far. The primary objective of our current study was to develop HMSNs using a simple, quick, and inexpensive method and evaluate their ability to enhance solubility, dissolution rate, and bioavailability of poorly water-soluble model BSC type II drug Carvedilol. Traditional mesoporous silica nanoparticles (MSNs) are synthesized using classical Stober method and HMSNs with an entire hollow core was induced by immersing cetyltrimethylammonium bromide (CTAB) in hot water. Initial MSNs were added in boiling distilled water to synthesize hollow structure, to enhance pore size, and also to remove CTAB template. HMSNs prepared in our current study has exhibited high surface area (886.84 m2/g), pore volume (0.79 cm3/g), and uniform pore size (3.18 nm), which also enabled the greater encapsulation of the model BSC II drug Carvedilol (CAR) inside the HMSNs. This technique also helped in achieving a high drug loading of (40.22 ± 0.73)%. Add to all this, in vitro studies conducted in the present work showed that compared with pure CAR and CAR loaded MSNs (CAR-MSNs) synthesized by Stober method, the drug-loaded HMSNs (CAR-HMSNs) exhibit sustained drug release performance. The high drug loading and sustained release can be attributed to the hollow porous structure of the HMSNs. Finally, a pharmacokinetic analysis in rats indicated a significant increase in bioavailability of carvedilol HMSNs in vivo compared to the pure carvedilol and carvedilol loaded MSNs. This study, therefore, offered a new, simple, and quick method to develop HMSNs with the ability to support higher loading and controlled release behavior in vitro and enhanced absorption of poorly-aqueous soluble drugs in-vivo.


Assuntos
Carvedilol/administração & dosagem , Carvedilol/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Dióxido de Silício/química , Água/química , Administração Oral , Adsorção , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Carvedilol/química , Carvedilol/farmacocinética , Liberação Controlada de Fármacos , Masculino , Nanopartículas/ultraestrutura , Nitrogênio/química , Porosidade , Ratos Sprague-Dawley , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Difração de Raios X
10.
Int J Pharm ; 557: 374-389, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30610896

RESUMO

The 'repurposed drug,' disulfiram (DSF), is an inexpensive FDA-approved anti-alcoholism drug with multi-target anti-cancer effect. However, the use of DSF in clinical settings remains limited due to its high instability in blood. In the present study, we created nanostructured lipid carriers (NLC) encapsulated DSF modified with d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E-TPGS). A spherical shape, superior drug encapsulation (80.7%), and decreased crystallinity of DSF were confirmed with results obtained from TEM, XRD, and DSC analysis. Addition of TPGS considerably improved the physicochemical stability profile of NLC-encapsulated DSF under the different conditions tested here. Furthermore, TPGS-DSF-NLCs outperformed unmodified DSF-NLCs and the free DSF solution by having significantly higher cytotoxicity, lower IC50 value (4T1: 263.2 nM and MCF-7: 279.9 nM), and an enhanced cellular uptake in MCF7 and 4T1 cell lines. In vivo anti-tumor analysis in 4T1 murine xenograft model mice revealed a significant (p-value < 0.05) decrease in tumor volume and higher tumor growth inhibition rate (48.24%) with TPGS-DSF-NLC treatment as compared to both the free DSF solution (8.49%) and DSF-NLC formulations (29.2%). Histopathology analysis of tumor tissues further confirmed a noticeably higher anti-tumor activity of TPGS-DSF-NLC through augmented cell necrosis in solid tumors. Hence, the present study established that addition of TPGS can synergize the anti-cancer activity of NLC-encapsulated DSF formulations, and thus, offer a promising anti-cancer delivery system for DSF.


Assuntos
Antineoplásicos/administração & dosagem , Dissulfiram/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanoestruturas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Vitamina E/administração & dosagem , Animais , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Dissulfiram/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Lipídeos/administração & dosagem , Lipídeos/química , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Ratos Sprague-Dawley , Vitamina E/química
11.
Eur J Pharm Sci ; 109: 200-208, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811130

RESUMO

Carvedilol (CAR) in its pure state has low aqueous solubility and extremely poor bioavailability which largely limit its clinical application. The aim of the study is to improve the dissolution rate and the bioavailability of CAR via preparing nanosuspensions with different stabilizers. Antisolvent precipitation-ultrasonication technique was used here. Attempts have been made to use food protein- Whey protein isolate (WPI) as a stabilizer in CAR loaded nanosuspension and also to compare its stabilizing potential with conventional nanosuspension stabilizers such as non-ionic linear copolymer-poloxamer 188 (PLX188) and anionic surfactant-sodium dodecyl sulfate (SDS). Optimized nanosuspensions showed narrow size distribution with particle size ranging from 275 to 640nm. Amorphous state of CAR nanocrystals which also improved the solubility by 16-, 25-, 55-fold accordingly was confirmed by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). From scanning electron microscopy (SEM), flaky shape of PLX188 and SDS nanosuspensions could be revealed but WPI nanosuspension was sphere-shaped. Up to 70% dissolution of loaded drug was observed within 15min in phosphate buffer (pH6.8). A pharmacokinetic study in rats indicated that both Cmax and AUC0-36 values of nanosuspensions were estimated to be 2-fold higher than those of reference, suggesting a significant increase in CAR bioavailability.


Assuntos
Carbazóis/química , Nanopartículas/química , Poloxâmero/química , Propanolaminas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Proteínas do Soro do Leite/química , Antagonistas Adrenérgicos beta/sangue , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/farmacocinética , Animais , Disponibilidade Biológica , Carbazóis/sangue , Carbazóis/farmacocinética , Carvedilol , Liberação Controlada de Fármacos , Masculino , Poloxâmero/farmacocinética , Propanolaminas/sangue , Propanolaminas/farmacocinética , Ratos Wistar , Dodecilsulfato de Sódio/farmacocinética , Solubilidade , Tensoativos/farmacocinética , Suspensões , Proteínas do Soro do Leite/farmacocinética
12.
AAPS PharmSciTech ; 18(7): 2618-2625, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28243887

RESUMO

Specific and effective delivery of DNA vaccines into dendritic cells (DCs) to express antigens is a precondition for induction of immune responses. Construction of a new DNA vaccine delivery system with the ability of programmed gene transfection may achieve this objective. In this study, we successfully integrated dendritic lipopeptide, charge-reversible polymer, and APC-targeted material into DNA vaccine delivery system through layer-by-layer (LBL) assembly. By the means of adjusting the weight ratios and concentration ratios of components, stable complexes were formulated with a particle size of 256.8 ± 10.7 nm and zeta potential of 25.1 ± 2.3 mV. Moreover, this DNA vaccine delivery system could achieve specific delivery into DCs, high transfection efficiency and low cytotoxicity, holding great promise for immunotherapy.


Assuntos
Células Dendríticas/imunologia , Técnicas de Transferência de Genes , Concentração de Íons de Hidrogênio , Vacinas de DNA/administração & dosagem , Células HeLa , Humanos , Nanoestruturas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA