Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833053

RESUMO

Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Antígeno CD47/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Adolescente , Adulto , Animais , Transtorno Autístico/patologia , Encéfalo/patologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 16/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Deficiência Intelectual/patologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo
2.
PLoS Pathog ; 14(5): e1007086, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782554

RESUMO

RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.


Assuntos
Peptídeo Hidrolases/metabolismo , Fosfolipídeos/biossíntese , Picornaviridae/enzimologia , Proteínas Virais/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Brefeldina A/farmacologia , Membrana Celular/ultraestrutura , Dactinomicina/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Biogênese de Organelas , Fosfatos de Fosfatidilinositol/metabolismo , Poliovirus/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia
3.
PLoS Pathog ; 14(4): e1007036, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702686

RESUMO

At the culmination of poliovirus (PV) multiplication, membranes are observed that contain phosphatidylinositol-4-phosphate (PI4P) and appear as vesicular clusters in cross section. Induction and remodeling of PI4P and membranes prior to or concurrent with genome replication has not been well studied. Here, we exploit two PV mutants, termed EG and GG, which exhibit aberrant proteolytic processing of the P3 precursor that substantially delays the onset of genome replication and/or impairs virus assembly, to illuminate the pathway of formation of PV-induced membranous structures. For WT PV, changes to the PI4P pool were observed as early as 30 min post-infection. PI4P remodeling occurred even in the presence of guanidine hydrochloride, a replication inhibitor, and was accompanied by formation of membrane tubules throughout the cytoplasm. Vesicular clusters appeared in the perinuclear region of the cell at 3 h post-infection, a time too slow for these structures to be responsible for genome replication. Delays in the onset of genome replication observed for EG and GG PVs were similar to the delays in virus-induced remodeling of PI4P pools, consistent with PI4P serving as a marker of the genome-replication organelle. GG PV was unable to convert virus-induced tubules into vesicular clusters, perhaps explaining the nearly 5-log reduction in infectious virus produced by this mutant. Our results are consistent with PV inducing temporally distinct membranous structures (organelles) for genome replication (tubules) and virus assembly (vesicular clusters). We suggest that the pace of formation, spatiotemporal dynamics, and the efficiency of the replication-to-assembly-organelle conversion may be set by both the rate of P3 polyprotein processing and the capacity for P3 processing to yield 3AB and/or 3CD proteins.


Assuntos
Membrana Celular/química , Organelas/virologia , Fosfatos de Fosfatidilinositol/metabolismo , Poliomielite/virologia , Poliovirus/patogenicidade , Proteínas Virais/metabolismo , Replicação Viral , Membrana Celular/metabolismo , Genoma Viral , Células HeLa , Humanos , Mutação , Fosfatos de Fosfatidilinositol/química , Poliomielite/genética , Poliomielite/metabolismo , Poliovirus/genética , Análise Espaço-Temporal , Proteínas Virais/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA