Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3830, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714672

RESUMO

One of the central challenges in condensed matter physics is to comprehend systems that have strong disorder and strong interactions. In the strongly localized regime, their subtle competition leads to glassy electron dynamics which ceases to exist well before the insulator-to-metal transition is approached as a function of doping. Here, we report on the discovery of glassy electron dynamics deep inside the good metal regime of an electron-doped quantum paraelectric system: KTaO3. We reveal that upon excitation of electrons from defect states to the conduction band, the excess injected carriers in the conduction band relax in a stretched exponential manner with a large relaxation time, and the system evinces simple aging phenomena-a telltale sign of glassy dynamics. Most significantly, we observe a critical slowing down of carrier dynamics below 35 K, concomitant with the onset of quantum paraelectricity in the undoped KTaO3. Our combined investigation using second harmonic generation technique, density functional theory and phenomenological modeling demonstrates quantum fluctuation-stabilized soft polar modes as the impetus for the glassy behavior. This study addresses one of the most fundamental questions regarding the potential promotion of glassiness by quantum fluctuations and opens a route for exploring glassy dynamics of electrons in a well-delocalized regime.

2.
Phys Rev Lett ; 132(3): 030402, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307083

RESUMO

We discuss the dynamics of integrable and nonintegrable chains of coupled oscillators under continuous weak position measurements in the semiclassical limit. We show that, in this limit, the dynamics is described by a standard stochastic Langevin equation, and a measurement-induced transition appears as a noise- and dissipation-induced chaotic-to-nonchaotic transition akin to stochastic synchronization. In the nonintegrable chain of anharmonically coupled oscillators, we show that the temporal growth and the ballistic light-cone spread of a classical out-of-time correlator characterized by the Lyapunov exponent and the butterfly velocity are halted above a noise or below an interaction strength. The Lyapunov exponent and the butterfly velocity both act like order parameter, vanishing in the nonchaotic phase. In addition, the butterfly velocity exhibits a critical finite-size scaling. For the integrable model, we consider the classical Toda chain and show that the Lyapunov exponent changes nonmonotonically with the noise strength, vanishing at the zero noise limit and above a critical noise, with a maximum at an intermediate noise strength. The butterfly velocity in the Toda chain shows a singular behavior approaching the integrable limit of zero noise strength.

3.
Proc Natl Acad Sci U S A ; 119(42): e2208373119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215507

RESUMO

The observation of [Formula: see text]-periodic behavior in Kondo insulators and semiconductor quantum wells challenges the conventional wisdom that quantum oscillations (QOs) necessarily arise from Fermi surfaces in metals. We revisit recently proposed theories for this phenomenon, focusing on a minimal model of an insulator with a hybridization gap between two opposite-parity light and heavy mass bands with an inverted band structure. We show that there are characteristic differences between the QO frequencies in the magnetization and the low-energy density of states (LE-DOS) of these insulators, in marked contrast to metals where all observables exhibit oscillations at the same frequency. The magnetization oscillations arising from occupied Landau levels occur at the same frequency that would exist in the unhybridized case. The LE-DOS oscillations in a disorder-free system are dominated by gap-edge states and exhibit a beat pattern between two distinct frequencies at low temperature. Disorder-induced in-gap states lead to an additional contribution to the DOS at the unhybridized frequency. The temperature dependence of the amplitude and phase of the magnetization and DOS oscillations are also qualitatively different and show marked deviations from the Lifshitz-Kosevich form well known in metals. We also compute transport to ensure that we are probing a regime with insulating upturns in the direct current (DC) resistivity.

4.
Phys Rev Lett ; 128(11): 115302, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363013

RESUMO

Chaotic quantum systems with Lyapunov exponent λ_{L} obey an upper bound λ_{L}≤2πk_{B}T/ℏ at temperature T, implying a divergence of the bound in the classical limit ℏ→0. Following this trend, does a quantum system necessarily become "more chaotic" when quantum fluctuations are reduced? Moreover, how do symmetry breaking and associated nontrivial dynamics influence the interplay of quantum mechanics and chaos? We explore these questions by computing λ_{L}(ℏ,T) in the quantum spherical p-spin glass model, where ℏ can be continuously varied. We find that quantum fluctuations, in general, make paramagnetic phase less and the replica symmetry-broken spin glass phase more chaotic. We show that the approach to the classical limit could be nontrivial, with nonmonotonic dependence of λ_{L} on ℏ close to the dynamical glass transition temperature T_{d}. Our results in the classical limit (ℏ→0) naturally describe chaos in supercooled liquid in structural glasses. We find a maximum in λ_{L}(T) substantially above T_{d}, concomitant with the crossover from simple to slow glassy relaxation. We further show that λ_{L}∼T^{α}, with the exponent α varying between 2 and 1 from quantum to classical limit, at low temperatures in the spin glass phase.

5.
Nat Commun ; 13(1): 1522, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314702

RESUMO

The planar assembly of twisted bilayer graphene (tBLG) hosts multitude of interaction-driven phases when the relative rotation is close to the magic angle (θm = 1.1∘). This includes correlation-induced ground states that reveal spontaneous symmetry breaking at low temperature, as well as possibility of non-Fermi liquid (NFL) excitations. However, experimentally, manifestation of NFL effects in transport properties of twisted bilayer graphene remains ambiguous. Here we report simultaneous measurements of electrical resistivity (ρ) and thermoelectric power (S) in tBLG for several twist angles between θ ~ 1.0 - 1.7∘. We observe an emergent violation of the semiclassical Mott relation in the form of excess S close to half-filling for θ ~ 1.6∘ that vanishes for θ ≳ 2∘. The excess S (≈2 µV/K at low temperatures T ~ 10 K at θ ≈ 1.6∘) persists upto ≈40 K, and is accompanied by metallic T-linear ρ with transport scattering rate (τ-1) of near-Planckian magnitude τ-1 ~ kBT/ℏ. Closer to θm, the excess S was also observed for fractional band filling (ν ≈ 0.5). The combination of non-trivial electrical transport and violation of Mott relation provides compelling evidence of NFL physics intrinsic to tBLG.

6.
Sci Adv ; 5(7): eaaw5798, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31309156

RESUMO

The universal quantization of thermal conductance provides information on a state's topological order. Recent measurements revealed that the observed value of thermal conductance of the 5 2 state is inconsistent with either Pfaffian or anti-Pfaffian model, motivating several theoretical articles. Analysis has been made complicated by the presence of counter-propagating edge channels arising from edge reconstruction, an inevitable consequence of separating the dopant layer from the GaAs quantum well and the resulting soft confining potential. Here, we measured thermal conductance in graphene with atomically sharp confining potential by using sensitive noise thermometry on hexagonal boron-nitride encapsulated graphene devices, gated by either SiO2/Si or graphite back gate. We find the quantization of thermal conductance within 5% accuracy for ν = 1 ; 4 3 ; 2 and 6 plateaus, emphasizing the universality of flow of information. These graphene quantum Hall thermal transport measurements will allow new insight into exotic systems like even-denominator quantum Hall fractions in graphene.

7.
Phys Rev Lett ; 116(11): 116601, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035315

RESUMO

We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n∝-logT of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.

8.
Sci Rep ; 5: 18647, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26689360

RESUMO

Emergent phases in the two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides have attracted great attention in the past decade. We present ab-initio electronic structure calculations for the interface between a Mott insulator GdTiO3 (GTO) and a band insulator SrTiO3 (STO) and compare our results with those for the widely studied LaAlO3/SrTiO3 (LAO/STO) interface between two band insulators. Our GTO/STO results are in excellent agreement with experiments, but qualitatively different from LAO/STO. We find an interface carrier density of 0.5 e(-)/Ti, independent of GTO thickness in both superlattice and thin film geometries, in contrast to LAO/STO. The superlattice geometry in LAO/STO offers qualitatively the same result as in GTO/STO. On the other hand, for a thin film geometry, the interface carrier density builds up only beyond a threshold thickness of LAO. The positive charge at the vacuum surface that compensates the 2DEG at the interface also exhibits distinct behaviors in the two systems. The compensating positive charge at the exposed surface of GTO charge disproportionates due to correlation effect making the surface insulating as opposed to that in LAO which remains metallic within band theory and presumably becomes insulating due to surface disorder or surface reconstruction.

9.
Nat Commun ; 4: 1700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591867

RESUMO

The observation of quantum oscillations in underdoped cuprates has generated intense debate about the nature of the field-induced resistive state and its implications for the 'normal state' of high-Tc superconductors. Quantum oscillations suggest an underlying Fermi liquid at high magnetic fields H and low temperatures, in contrast with the pseudogap seen in zero-field, high-temperature spectroscopic experiments. Recent specific heat measurements show quantum oscillations in addition to a large field-dependent suppression of the electronic density of states. Here we present a theoretical analysis that reconciles these seemingly contradictory observations. We model the resistive state as a vortex liquid with short-range d-wave pairing correlations. We show that this state exhibits quantum oscillations, with a period determined by a Fermi surface reconstructed by a competing order parameter, in addition to a large suppression of the density of states that goes like √H at low fields.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021501, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463213

RESUMO

We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.


Assuntos
Transferência de Energia , Vidro/química , Modelos Químicos , Modelos Moleculares , Soluções/química , Simulação por Computador , Transição de Fase , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA