Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Front Microbiol ; 15: 1426584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101034

RESUMO

Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.

2.
Nat Commun ; 15(1): 6384, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085194

RESUMO

The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.


Assuntos
Archaea , Ciclo do Carbono , Metano , Microbiologia do Solo , Solo , Áreas Alagadas , Metano/metabolismo , Archaea/genética , Archaea/metabolismo , Solo/química , Filogenia , Genoma Arqueal , Oxirredução
3.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866018

RESUMO

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Assuntos
Archaea , Hidrogênio , Hidrogenase , Filogenia , Archaea/genética , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Genoma Arqueal , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Hidrogenase/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Estrutura Terciária de Proteína
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38832716

RESUMO

Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests that corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community- and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.


Assuntos
Archaea , Bactérias , Corrinoides , Microbiota , Microbiologia do Solo , Vitamina B 12 , Corrinoides/metabolismo , Vitamina B 12/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Archaea/isolamento & purificação , Metagenoma , Solo/química , Pradaria
5.
Nat Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918468

RESUMO

Methane emissions are mitigated by anaerobic methane-oxidizing archaea, including Methanoperedens. Some Methanoperedens host huge extrachromosomal genetic elements (ECEs) called Borgs that may modulate their activity, yet the broader diversity of Methanoperedens ECEs is understudied. Here we report small enigmatic linear ECEs, circular viruses and unclassified ECEs that are predicted to replicate within Methanoperedens. Linear ECEs have inverted terminal repeats, tandem repeats and coding patterns that are strongly reminiscent of Borgs, but they are only 52-145 kb in length. As they share proteins with Borgs and Methanoperedens, we refer to them as mini-Borgs. Mini-Borgs are genetically diverse and can be assigned to at least five family-level groups. We identify eight families of Methanoperedens viruses, some of which encode multi-haem cytochromes, and circular ECEs encoding transposon-associated TnpB genes with proximal population-heterogeneous CRISPR arrays. These ECEs exchange genetic information with each other and with Methanoperedens, probably impacting their archaeal host activity and evolution.

6.
Nat Commun ; 15(1): 5414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926353

RESUMO

Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.


Assuntos
Genoma Arqueal , Metano , Filogenia , Metano/metabolismo , Oxirredução , Archaea/genética , Archaea/metabolismo , Sequenciamento por Nanoporos/métodos , Metilação de DNA , Microbiologia do Solo
7.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405713

RESUMO

Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.

8.
Environ Sci Technol ; 58(6): 2830-2846, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301118

RESUMO

Biological sulfate reduction (BSR) represents a promising strategy for bioremediation of sulfate-rich waste streams, yet the impact of metabolic interactions on performance is largely unexplored. Here, genome-resolved metagenomics was used to characterize 17 microbial communities in reactors treating synthetic sulfate-contaminated solutions. Reactors were supplemented with lactate or acetate and a small amount of fermentable substrate. Of the 163 genomes representing all the abundant bacteria, 130 encode 321 NiFe and FeFe hydrogenases and all genomes of the 22 sulfate-reducing microorganisms (SRM) encode genes for H2 uptake. We observed lactate oxidation solely in the first packed bed reactor zone, with propionate and acetate oxidation in the middle and predominantly acetate oxidation in the effluent zone. The energetics of these reactions are very different, yet sulfate reduction kinetics were unaffected by the type of electron donor available. We hypothesize that the comparable rates, despite the typically slow growth of SRM on acetate, are a result of the consumption of H2 generated by fermentation. This is supported by the sustained performance of a predominantly acetate-supplemented stirred tank reactor dominated by diverse fermentative bacteria encoding FeFe hydrogenase genes and SRM capable of acetate and hydrogen consumption and CO2 assimilation. Thus, addition of fermentable substrates to stimulate syntrophic relationships may improve the performance of BSR reactors supplemented with inexpensive acetate.


Assuntos
Reatores Biológicos , Sulfatos , Fermentação , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Acetatos/metabolismo , Lactatos/metabolismo
9.
BMC Biol ; 22(1): 41, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369453

RESUMO

BACKGROUND: Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS: Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS: Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.


Assuntos
Elementos da Série dos Lantanídeos , Lantânio , Dióxido de Silício , Elementos da Série dos Lantanídeos/metabolismo , Metanol , Solo , Bactérias/genética , Fosfatos/metabolismo , Minerais/metabolismo
10.
Curr Biol ; 34(3): R80-R81, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320475

RESUMO

Discovery of microbial diversity has been increasing at an astonishing rate. In this quick guide, Jaffe and Banfield provide an introduction to one major group of recently discovered microbes - the 'Candidate Phyla Radiation' bacteria.


Assuntos
Bactérias , Metagenômica , Filogenia
11.
Nat Microbiol ; 9(3): 737-750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321183

RESUMO

Viruses are often studied using metagenome-assembled sequences, but genome incompleteness hampers comprehensive and accurate analyses. Contig Overlap Based Re-Assembly (COBRA) resolves assembly breakpoints based on the de Bruijn graph and joins contigs. Here we benchmarked COBRA using ocean and soil viral datasets. COBRA accurately joined the assembled sequences and achieved notably higher genome accuracy than binning tools. From 231 published freshwater metagenomes, we obtained 7,334 bacteriophage clusters, ~83% of which represent new phage species. Notably, ~70% of these were circular, compared with 34% before COBRA analyses. We expanded sampling of huge phages (≥200 kbp), the largest of which was curated to completion (717 kbp). Improved phage genomes from Rotsee Lake provided context for metatranscriptomic data and indicated the in situ activity of huge phages, whiB-encoding phages and cysC- and cysH-encoding phages. COBRA improves viral genome assembly contiguity and completeness, thus the accuracy and reliability of analyses of gene content, diversity and evolution.


Assuntos
Bacteriófagos , Vírus , Metagenoma , Reprodutibilidade dos Testes , Genoma Viral , Bacteriófagos/genética
12.
Microbiome ; 12(1): 15, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273328

RESUMO

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Assuntos
Ecossistema , Água Subterrânea , Bactérias/genética , Bactérias/metabolismo , Sulfetos/metabolismo , Oxirredução , Água Subterrânea/microbiologia , Enxofre/metabolismo , Biofilmes , Hidrogênio/metabolismo , Filogenia
13.
Cell Host Microbe ; 32(1): 35-47.e6, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38096814

RESUMO

Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Lactente , Feminino , Adulto , Humanos , Recém-Nascido , Pré-Escolar , Bacteriófagos/genética , Códon de Terminação , Recém-Nascido Prematuro , Microbioma Gastrointestinal/genética , DNA
14.
Nucleic Acids Res ; 51(22): 12414-12427, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971304

RESUMO

RNA-guided endonucleases form the crux of diverse biological processes and technologies, including adaptive immunity, transposition, and genome editing. Some of these enzymes are components of insertion sequences (IS) in the IS200/IS605 and IS607 transposon families. Both IS families encode a TnpA transposase and a TnpB nuclease, an RNA-guided enzyme ancestral to CRISPR-Cas12s. In eukaryotes, TnpB homologs occur as two distinct types, Fanzor1s and Fanzor2s. We analyzed the evolutionary relationships between prokaryotic TnpBs and eukaryotic Fanzors, which revealed that both Fanzor1s and Fanzor2s stem from a single lineage of IS607 TnpBs with unusual active site arrangement. The widespread nature of Fanzors implies that the properties of this particular lineage of IS607 TnpBs were particularly suited to adaptation in eukaryotes. Biochemical analysis of an IS607 TnpB and Fanzor1s revealed common strategies employed by TnpBs and Fanzors to co-evolve with their cognate transposases. Collectively, our results provide a new model of sequential evolution from IS607 TnpBs to Fanzor2s, and Fanzor2s to Fanzor1s that details how genes of prokaryotic origin evolve to give rise to new protein families in eukaryotes.


Assuntos
Bactérias , Endonucleases , Evolução Molecular , Bactérias/enzimologia , Bactérias/genética , Elementos de DNA Transponíveis , Endonucleases/genética , Endonucleases/metabolismo , Células Procarióticas/enzimologia , Transposases/metabolismo , Células Eucarióticas/enzimologia
15.
Nat Commun ; 14(1): 7417, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973815

RESUMO

The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.


Assuntos
Bifidobacterium , Microbiota , Feminino , Criança , Humanos , Lactente , Bifidobacterium/genética , Bifidobacterium/metabolismo , Trissacarídeos/metabolismo , Leite Humano/química , Oligossacarídeos/metabolismo
16.
Curr Biol ; 33(24): 5316-5325.e3, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37979578

RESUMO

The enzyme rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes the majority of biological carbon fixation on Earth. Although the vast majority of rubiscos across the tree of life assemble as homo-oligomers, the globally predominant form I enzyme-found in plants, algae, and cyanobacteria-forms a unique hetero-oligomeric complex. The recent discovery of a homo-oligomeric sister group to form I rubisco (named form I') has filled a key gap in our understanding of the enigmatic origins of the form I clade. However, to elucidate the series of molecular events leading to the evolution of form I rubisco, we must examine more distantly related sibling clades to contextualize the molecular features distinguishing form I and form I' rubiscos. Here, we present a comparative structural study retracing the evolutionary history of rubisco that reveals a complex structural trajectory leading to the ultimate hetero-oligomerization of the form I clade. We structurally characterize the oligomeric states of deep-branching form Iα and I'' rubiscos recently discovered from metagenomes, which represent key evolutionary intermediates preceding the form I clade. We further solve the structure of form I'' rubisco, revealing the molecular determinants that likely primed the enzyme core for the transition from a homo-oligomer to a hetero-oligomer. Our findings yield new insight into the evolutionary trajectory underpinning the adoption and entrenchment of the prevalent assembly of form I rubisco, providing additional context when viewing the enzyme family through the broader lens of protein evolution.


Assuntos
Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo
17.
mBio ; : e0176623, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009957

RESUMO

IMPORTANCE: Here, we profiled putative phages of Saccharibacteria, which are of particular importance as Saccharibacteria influence some human oral diseases. We additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative genetic code. Among the phages identified in this study, some are targeted by spacers from both CPR and non-CPR bacteria and others by both bacteria that use the standard genetic code as well as bacteria that use an alternative genetic code. These findings represent new insights into possible phage replication strategies and have relevance for phage therapies that seek to manipulate microbiomes containing CPR bacteria.

18.
Nat Commun ; 14(1): 5835, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730729

RESUMO

Viruses are abundant, ubiquitous members of soil communities that kill microbial cells, but how they respond to perturbation of soil ecosystems is essentially unknown. Here, we investigate lineage-specific virus-host dynamics in grassland soil following "wet-up", when resident microbes are both resuscitated and lysed after a prolonged dry period. Quantitative isotope tracing, time-resolved metagenomics and viromic analyses indicate that dry soil holds a diverse but low biomass reservoir of virions, of which only a subset thrives following wet-up. Viral richness decreases by 50% within 24 h post wet-up, while viral biomass increases four-fold within one week. Though recent hypotheses suggest lysogeny predominates in soil, our evidence indicates that viruses in lytic cycles dominate the response to wet-up. We estimate that viruses drive a measurable and continuous rate of cell lysis, with up to 46% of microbial death driven by viral lysis one week following wet-up. Thus, viruses contribute to turnover of soil microbial biomass and the widely reported CO2 efflux following wet-up of seasonally dry soils.


Assuntos
Ecossistema , Vírus , Pradaria , California , Solo
19.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609353

RESUMO

RNA-guided endonucleases form the crux of diverse biological processes and technologies, including adaptive immunity, transposition, and genome editing. Some of these enzymes are components of insertion sequences (IS) in the IS200/IS605 and IS607 transposon families. Both IS families encode a TnpA transposase and TnpB nuclease, an RNA-guided enzyme ancestral to CRISPR-Cas12. In eukaryotes and their viruses, TnpB homologs occur as two distinct types, Fanzor1 and Fanzor2. We analyzed the evolutionary relationships between prokaryotic TnpBs and eukaryotic Fanzors, revealing that a clade of IS607 TnpBs with unusual active site arrangement found primarily in Cyanobacteriota likely gave rise to both types of Fanzors. The wide-spread nature of Fanzors imply that the properties of this particular group of IS607 TnpBs were particularly suited to adaptation and evolution in eukaryotes and their viruses. Experimental characterization of a prokaryotic IS607 TnpB and virally encoded Fanzor1s uncovered features that may have fostered coevolution between TnpBs/Fanzors and their cognate transposases. Our results provide insight into the evolutionary origins of a ubiquitous family of RNA-guided proteins that shows remarkable conservation across domains of life.

20.
Nat Commun ; 14(1): 4768, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553333

RESUMO

Metagenomic or metabarcoding data are often used to predict microbial interactions in complex communities, but these predictions are rarely explored experimentally. Here, we use an organism abundance correlation network to investigate factors that control community organization in mine tailings-derived laboratory microbial consortia grown under dozens of conditions. The network is overlaid with metagenomic information about functional capacities to generate testable hypotheses. We develop a metric to predict the importance of each node within its local network environments relative to correlated vitamin auxotrophs, and predict that a Variovorax species is a hub as an important source of thiamine. Quantification of thiamine during the growth of Variovorax in minimal media show high levels of thiamine production, up to 100 mg/L. A few of the correlated thiamine auxotrophs are predicted to produce pantothenate, which we show is required for growth of Variovorax, supporting that a subset of vitamin-dependent interactions are mutualistic. A Cryptococcus yeast produces the B-vitamin pantothenate, and co-culturing with Variovorax leads to a 90-130-fold fitness increase for both organisms. Our study demonstrates the predictive power of metagenome-informed, microbial consortia-based network analyses for identifying microbial interactions that underpin the structure and functioning of microbial communities.


Assuntos
Comamonadaceae , Microbiota , Metagenômica , Vitaminas , Microbiota/genética , Metagenoma/genética , Tiamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA