Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Med (Lond) ; 23(Suppl 6): 114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38182191
2.
Orphanet J Rare Dis ; 17(1): 331, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056436

RESUMO

BACKGROUND: Galactose epimerase (GALE) deficiency is a rare hereditary disorder of galactose metabolism with only a few cases described in the literature. This study aims to present the data of patients with GALE deficiency from different countries included through the Galactosemia Network to further expand the existing knowledge and review the current diagnostic strategy, treatment and follow-up of this not well characterized entity. METHODS: Observational study collecting medical data from December 2014 to April 2022 of 22 not previously reported patients from 14 centers in 9 countries. Patients were classified as generalized or non-generalized based on their genotype, enzyme activities in different tissues and/or clinical picture and professional judgment of the treating physician. RESULTS: In total 6 patients were classified as generalized and 16 as non-generalized. In the generalized group, acute neonatal illness was reported in 3, cognitive and developmental delays were present in 5 and hearing problems were reported in 3. Four generalized patients were homozygous for the genetic variant NM_001008216.2:c.280G > A (p.Val94Met). In the non-generalized group, no clearly related symptoms were found. Ten novel genetic variants were reported in this study population. CONCLUSION: The phenotypic spectrum of GALE deficiency ranges from asymptomatic to severe. The generalized patients have a phenotype that is in line with the 9 described cases in the literature and prescribing dietary interventions is the cornerstone for treatment. In the non-generalized group, treatment advice is more difficult. To be able to offer proper counseling, in addition to red blood cell enzyme activity, genetic studies, transferrin glycoform analysis and enzymatic measurements in fibroblasts are recommended. Due to lack of facilities, additional enzymatic testing is not common practice in many centers nor a tailored long-term follow-up is performed.


Assuntos
Galactosemias , Galactosemias/genética , Galactosemias/metabolismo , Genótipo , Homozigoto , Humanos , Sistema de Registros , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
3.
J Pers Med ; 11(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562227

RESUMO

Galactosemia is a rare inherited metabolic disease resulting from mutations in the four genes which encode enzymes involved in the metabolism of galactose. The current therapy, the removal of galactose from the diet, is inadequate. Consequently, many patients suffer lifelong physical and cognitive disability. The phenotype varies from almost asymptomatic to life-threatening disability. The fundamental biochemical cause of the disease is a decrease in enzymatic activity due to failure of the affected protein to fold and/or function correctly. Many novel therapies have been proposed for the treatment of galactosemia. Often, these are designed to treat the symptoms and not the fundamental cause. Pharmacological chaperones (PC) (small molecules which correct the folding of misfolded proteins) represent an exciting potential therapy for galactosemia. In theory, they would restore enzyme function, thus preventing downstream pathological consequences. In practice, no PCs have been identified for potential application in galactosemia. Here, we review the biochemical basis of the disease, identify opportunities for the application of PCs and describe how these might be discovered. We will conclude by considering some of the clinical issues which will affect the future use of PCs in the treatment of galactosemia.

4.
Biochimie ; 183: 13-17, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33181226

RESUMO

Type IV galactosemia is a recently discovered inherited metabolic disease. It is caused by mutations in the GALM gene which result in reduced activity of the enzyme galactose mutarotase. This enzyme catalyses the interconversion of the α- and ß-anomers of d-galactose and some other monosaccharides. Human galactose mutarotase is monomeric and its structure is largely composed of ß-sheets. The catalytic mechanism requires a histidine residue acting as an acid, and a glutamate acting as a base. Together, these residues open the pyranose ring of d-galactose enabling free rotation of the bond between the first two carbon atoms in the monosaccharide. This can cause reversal of the configuration of the hydroxyl group attached to carbon 1. Type IV galactosemia manifests with similar symptoms to type II galactosemia (galactokinase deficiency), i.e. early onset cataracts. However, as a recently discovered disease, the longer-term consequences are unknown. The physiological role, if any, of galactose mutarotase's reactions with other monosaccharides are not yet known. The possible associations with other proteins also require further investigation.


Assuntos
Carboidratos Epimerases , Galactose , Galactosemias , Mutação , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Galactose/química , Galactose/genética , Galactose/metabolismo , Galactosemias/genética , Galactosemias/metabolismo , Humanos , Conformação Proteica em Folha beta
5.
Curr Cancer Drug Targets ; 17(1): 53-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27659430

RESUMO

UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyl transferase-6 (pp-GalNAc-T6) is a member of the N-acetyl-D-galactosamine transferase family. It catalyzes the addition of N-acetyl-D-galactosamine to proteins, often the first step in O-glycosylation of proteins. Glycosylated proteins play important roles in vivo in the cell membrane. These are often involved in cell-cell adhesion, cytoskeleton regulation and immune recognition. pp-GalNAc-T6 has been shown to be upregulated in a number of types of cancer. Abnormally glycosylated forms of mucin 1 (a substrate of the enzyme), are used clinically as a biomarker for breast cancer. There is potential for other products of the pp-GalNAc- T6 catalyzed reaction to be used. It is also possible that pp-GalNAc-T6 itself could be used as a biomarker, since levels of this protein tend to be low in non-malignant tissues. pp- GalNAc-T6 has been implicated in malignant transformation and metastasis of cancer cells. As such, it has considerable potential as a target for chemotherapy. To date, no selective inhibitors of the enzyme have been identified. However, general inhibitors of the enzyme family result in reduced cell surface O-linked glycosylation and induce apoptosis in cultured cells. Thus, a selective inhibitor of pp-GalNAc-T6 is likely to target cancer cells and could be developed into a novel anticancer therapy.


Assuntos
N-Acetilgalactosaminiltransferases/antagonistas & inibidores , N-Acetilgalactosaminiltransferases/metabolismo , Neoplasias/enzimologia , Inibidores Enzimáticos/farmacologia , Humanos , Terapia de Alvo Molecular , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
6.
Parasitology ; 142(3): 463-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25124392

RESUMO

Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 µM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.


Assuntos
Fasciola hepatica/enzimologia , UDPglucose 4-Epimerase/química , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Fasciola hepatica/efeitos dos fármacos , Fasciola hepatica/genética , Concentração Inibidora 50 , Ponto Isoelétrico , Dados de Sequência Molecular , Multimerização Proteica , UDPglucose 4-Epimerase/antagonistas & inibidores , UDPglucose 4-Epimerase/genética
7.
Biochimie ; 95(4): 751-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23142130

RESUMO

A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the ß-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Dineínas/química , Fasciola hepatica , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/isolamento & purificação , Proteínas de Helminto/genética , Proteínas de Helminto/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA