Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 201: 108166, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127262

RESUMO

The orographic evolution of the Himalaya-Tibet Mountain system continues to be a subject of controversy, leading to considerable uncertainty regarding the environment and surface elevation of the Tibetan Plateau during the Cenozoic era. As many geoscientific (but not paleontological) studies suggest, elevations close to modern heights exist in vast areas of Tibet since at least the late Paleogene, implicating the presence of large-scale alpine environments for more than 30 million years. To explore a recently proposed alternative model that assumes a warm temperate environment across paleo-Tibet, we carried out a phylogeographic survey using genomic analyses of samples covering the range of endemic lazy toads (Scutiger) across the Himalaya-Tibet orogen. We identified two main clades, with several, geographically distinct subclades. The long temporal gap between the stem and crown age of Scutiger may suggest high extinction rates. Diversification within the crown group, depending on the calibration, occurred either from the Mid-Miocene or Late-Miocene and continued until the Holocene. The present-day Himalayan Scutiger fauna could have evolved from lineages that existed on the southern edges of the paleo-Tibetan area (the Transhimalaya = Gangdese Shan), while extant species living on the eastern edge of the Plateau originated probably from the eastern edges of northern parts of the ancestral Tibetan area (Hoh Xil, Tanggula Shan). Based on the Mid-Miocene divergence time estimation and ancestral area reconstruction, we propose that uplift-associated aridification of a warm temperate Miocene-Tibet, coupled with high extirpation rates of ancestral populations, and species range shifts along drainage systems and epigenetic transverse valleys of the rising mountains, is a plausible scenario explaining the phylogenetic structure of Scutiger. This hypothesis aligns with the fossil record but conflicts with geoscientific concepts of high elevated Tibetan Plateau since the late Paleogene. Considering a Late-Miocene/Pliocene divergence time, an alternative scenario of dispersal from SE Asia into the East, Central, and West Himalaya cannot be excluded, although essential evolutionary and biogeographic aspects remain unresolved within this model.

2.
Mol Ecol ; 33(15): e17446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946613

RESUMO

The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.


Assuntos
Anuros , Filogenia , Animais , Tibet , Anuros/genética , Anuros/classificação , Biodiversidade , Filogeografia , Evolução Biológica , Transcriptoma , Ecossistema , Clima , Temperatura
3.
Sci Rep ; 13(1): 13272, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582802

RESUMO

The timing, sequence, and scale of uplift of the Himalayan-Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil data. Using molecular genetic data of ground beetles, we aim to reconstruct the paleoenvironmental history of the HTO, focusing on its southern margin (Himalayas, South Tibet). Based on a comprehensive sampling of extratropical Carabus, and ~ 10,000 bp of mitochondrial and nuclear DNA we applied Bayesian and Maximum likelihood methods to infer the phylogenetic relationships. We show that Carabus arrived in the HTO at the Oligocene-Miocene boundary. During the early Miocene, five lineages diversified in different parts of the HTO, initially in its southern center and on its eastern margin. Evolution of alpine taxa occurred during the late Miocene. There were apparently no habitats for Carabus before the late Oligocene. Until the Late Oligocene elevations must have been low throughout the HTO. Temperate forests emerged in South Tibet in the late Oligocene at the earliest. Alpine environments developed in the HTO from the late Miocene and, in large scale, during the Pliocene-Quaternary. Findings are consistent with fossil records but contrast with uplift models recovered from stable isotope paleoaltimetry.


Assuntos
Evolução Biológica , Besouros , Filogenia , Besouros/classificação , Besouros/genética , Ecossistema , Paleontologia , Ásia , Fósseis
4.
Ecol Evol ; 9(24): 14498-14511, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938536

RESUMO

Recent advances in the understanding of the evolution of the Asian continent challenge the long-held belief of a faunal immigration into the Himalaya. Spiny frogs of the genus Nanorana are a characteristic faunal group of the Himalaya-Tibet orogen (HTO). We examine the phylogeny of these frogs to explore alternative biogeographic scenarios for their origin in the Greater Himalaya, namely, immigration, South Tibetan origin, strict vicariance. We sequenced 150 Nanorana samples from 62 localities for three mitochondrial (1,524 bp) and three nuclear markers (2,043 bp) and complemented the data with sequence data available from GenBank. We reconstructed a gene tree, phylogenetic networks, and ancestral areas. Based on the nuDNA, we also generated a time-calibrated species tree. The results revealed two major clades (Nanorana and Quasipaa), which originated in the Lower Miocene from eastern China and subsequently spread into the HTO (Nanorana). Five well-supported subclades are found within Nanorana: from the East, Central, and Northwest Himalaya, the Tibetan Plateau, and the southeastern Plateau margin. The latter subclade represents the most basal group (subgenus Chaparana), the Plateau group (Nanorana) represents the sister clade to all species of the Greater Himalaya (Paa). We found no evidence for an east-west range expansion of Paa along the Himalaya, nor clear support for a strict vicariance model. Diversification in each of the three Himalayan subclades has probably occurred in distinct areas. Specimens from the NW Himalaya are placed basally relative to the highly diverse Central Himalayan group, while the lineage from the Tibetan Plateau is placed within a more terminal clade. Our data indicate a Tibetan origin of Himalayan Nanorana and support a previous hypothesis, which implies that a significant part of the Himalayan biodiversity results from primary diversification of the species groups in South Tibet before this part of the HTO was uplifted to its recent heights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA