Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 91: 101000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081756

RESUMO

Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.


Assuntos
Fosfolipase D , Humanos , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas , Transdução de Sinais , Ácidos Fosfatídicos/metabolismo , Colina , Mamíferos/metabolismo
2.
Prog Lipid Res ; 78: 101018, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31830503

RESUMO

Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/metabolismo , Animais , Humanos , Fosfolipase D/deficiência
3.
Biochem Soc Trans ; 34(Pt 3): 346-50, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16709158

RESUMO

The major PI (phosphatidylinositol)/PC (phosphatidylcholine)-transfer protein in yeast, Sec14p, co-ordinates lipid metabolism with protein transport from the Golgi complex. Yeast also express five additional gene products that share 24-65% primary sequence identity with Sec14p. These Sec14p-like proteins are termed SFH (Sec Fourteen Homologue) proteins, and overexpression of certain individual SFH gene products rescues sec14-1(ts)-associated growth and secretory defects. SFH proteins are atypical in that these stimulate the transfer of PI, but not PC, between distinct membrane bilayer systems in vitro. Further analysis reveals that SFH proteins functionally interact with the Stt4p phosphoinositide 4-kinase to stimulate PtdIns(4,5)P(2) synthesis which in turn activates phospholipase D. Finally, genetic analyses indicate that Sfh5p interfaces with the function of specific subunits of the exocyst complex as well as the yeast SNAP-25 (25 kDa synaptosome-associated protein) homologue, Sec9p. Our current view is that Sfh5p regulates PtdIns(4,5)P(2) homoeostasis at the plasma membrane, and that Sec9p responds to that regulation. Thus SFH proteins individually regulate specific aspects of lipid metabolism that couple, with exquisite specificity, with key cellular functions.


Assuntos
Homeostase/fisiologia , Líquido Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Ativo , Líquido Intracelular/química , Família Multigênica , Fosfatidilinositóis/química , Proteínas de Transferência de Fosfolipídeos/química , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
4.
Biochem Soc Trans ; 32(Pt 6): 1063-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15506964

RESUMO

The mammalian phospholipid exchange protein PITPalpha (phosphatidylinositol transfer protein alpha), found in both extranuclear and endonuclear compartments, is thought in part to facilitate nuclear import of the PtdIns (phosphatidylinositol) consumed in the generation of proliferation-associated endonuclear diacylglycerol accumulations. Unlike phosphatidylcholine, endonuclear PtdIns is not synthesized in situ. However, despite progressive postnatal lethality of PITPalpha ablation in mice, PITPalpha(-/-) MEF (mouse embryonic fibroblasts) lack an obviously impaired proliferative capacity. We used ESI-MS (tandem electrospray ionization-MS) to monitor incorporation of the deuterated phospholipid precursors, choline-d(9) and inositol-d(6), into molecular species of whole cell and endonuclear phosphatidylcholine and PtdIns over 24 h to assess the contribution of PITPalpha to the nuclear import of PtdIns into MEF cells. In cells labelled for 1, 3, 6, 12 and 24 h fractional inositol-d(6) incorporation into whole-cell PtdIns species was consistently higher in PITPalpha(-/-) MEF implying greater flux through its biosynthetic pathway. Moreover, endonuclear accumulation of PtdIns-d(6) was apparent in the PITPalpha(-/-) cells and mirrored that in PITPalpha(+/+) cells. Together, these results suggest that the essential endonuclear PtdIns import via PITPalpha can be accommodated by other mechanisms.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Peso Molecular
5.
Plant Cell ; 13(6): 1369-82, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11402166

RESUMO

Phosphatidylinositol transfer proteins (PITPs) modulate signal transduction pathways and membrane-trafficking functions in eukaryotes. Here, we describe the characterization of a gene family from Lotus japonicus that encodes a novel class of plant PITP-like proteins (LjPLPs) and that is regulated in an unusual nodule-specific manner. Members of this gene family were identified based on their nucleotide sequence homology with a previously described cDNA, LjNOD16, which encodes the L. japonicus late nodulin Nlj16. Nlj16 or highly related amino acid sequences are shown to constitute C-terminal domains of LjPLPs and are suggested to function as specific plasma membrane targeting modules. The expression patterns of one member of this gene family (LjPLP-IV) revealed that LjNOD16 mRNA synthesis in nodules is the result of the transcriptional activity of a nodule-specific promoter located in an intron of the LjPLP-IV gene. This intron-borne bidirectional promoter also generates nodule-specific antisense transcripts derived from the N-terminal PITP domain coding region of the LjPLP-IV gene. We propose that Nlj16 protein synthesis and LjPLP-IV antisense transcript generation are components of an elaborate mechanism designed to control LjPLP synthesis and/or functioning in nodules.


Assuntos
Proteínas de Transporte/genética , Fabaceae/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana , Proteínas de Plantas/genética , Plantas Medicinais , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Elementos Antissenso (Genética) , Sequência de Bases , Membrana Celular/metabolismo , DNA de Plantas , Regulação para Baixo , Íntrons , Dados de Sequência Molecular , Fixação de Nitrogênio , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transferência de Fosfolipídeos , Proteínas de Plantas/fisiologia , Raízes de Plantas , Regiões Promotoras Genéticas , Transporte Proteico , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão , Homologia de Sequência de Aminoácidos
6.
Mol Biol Cell ; 12(4): 901-17, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11294895

RESUMO

The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20(+) is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20(+) gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Genes Fúngicos , Complexo de Golgi/metabolismo , Humanos , Meiose , Dados de Sequência Molecular , Mutagênese , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae , Schizosaccharomyces/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Temperatura
7.
Mol Biol Cell ; 12(4): 1117-29, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11294911

RESUMO

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient "bypass Sec14p" phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1(ts)-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , 1-Fosfatidilinositol 4-Quinase/biossíntese , 1-Fosfatidilinositol 4-Quinase/genética , Transporte Biológico , Proteínas de Transporte/genética , Colina/metabolismo , Meios de Cultura , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Expressão Gênica , Lisofosfolipase , Metilação , Fosfatidiletanolaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 275(44): 34293-305, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-10887188

RESUMO

The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.


Assuntos
Proteínas de Membrana/fisiologia , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetinae , Primers do DNA , Retículo Endoplasmático/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
Biochim Biophys Acta ; 1486(1): 55-71, 2000 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-10856713

RESUMO

Phosphatidylinositol transfer proteins (PITPs) are now becoming widely recognized as intriguing proteins that participate in the coordination and coupling of phospholipid metabolism with vesicle trafficking, and in the regulation of important signaling cascades. Yet, only in one case is there a large body of evidence that speaks to the precise identities of PITP-dependent cellular reactions, and to the mechanisms by which PITPs execute function in eukaryotic cells. At present, yeast provide the most powerful system for analysis of the physiology of PITP function in vivo, and the mechanism by which this function is carried out. Here, we review the recent progress and remaining questions in the area of PITP function in yeast.


Assuntos
Proteínas de Transporte/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Transferases de Grupos Nitrogenados/genética , Proteínas de Transferência de Fosfolipídeos , Monoéster Fosfórico Hidrolases , Receptores de Esteroides , Homologia de Sequência de Aminoácidos
10.
Mol Biol Cell ; 11(6): 1989-2005, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10848624

RESUMO

Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana , Fosfatidilinositóis/metabolismo , Fosfolipase D/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Compartimento Celular , Divisão Celular , DNA Fúngico , Endossomos/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
J Biol Chem ; 275(19): 14446-56, 2000 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-10799527

RESUMO

A new yeast strain, designated pstB2, that is defective in the conversion of nascent phosphatidylserine (PtdSer) to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase 2, has been isolated. The pstB2 strain requires ethanolamine for growth. Incubation of cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrates a 50% increase in the labeling of PtdSer and a 72% decrease in PtdEtn formation in the mutant relative to the parental strain. The PSTB2 gene was isolated by complementation, and it restores ethanolamine prototrophy and corrects the defective lipid metabolism of the pstB2 strain. The PSTB2 gene is allelic to the pleiotropic drug resistance gene, PDR17, and is homologous to SEC14, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein. The protein, PstB2p, displays phosphatidylinositol but not PtdSer transfer activity, and its overexpression causes suppression of sec14 mutants. However, overexpression of the SEC14 gene fails to suppress the conditional lethality of pstB2 strains. The transport-dependent metabolism of PtdSer to PtdEtn occurs in permeabilized wild type yeast but is dramatically reduced in permeabilized pstB2 strains. Fractionation of permeabilized cells demonstrates that the pstB2 strain accumulates nascent PtdSer in the Golgi apparatus and a novel light membrane fraction, consistent with a defect in lipid transport processes that control substrate access to PtdSer decarboxylase 2.


Assuntos
Proteínas de Transporte/genética , Proteínas de Membrana/genética , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Genes Fúngicos , Complexo de Golgi/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
12.
Int Rev Cytol ; 197: 35-81, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10761115

RESUMO

Issues of how cells generate and maintain unique lipid compositions in distinct intracellular membrane systems remain the subject of much study. A ubiquitous class of soluble proteins capable of transporting phospholipid monomers from membrane to membrane across an aqueous milieu has been thought to define part of the mechanism by which lipids are sorted in cells. Progress in the study of these phospholipid transfer proteins (PLTPs) raises questions regarding their physiological functions in cells and the mechanisms by which these proteins execute them. It is now clear that across the eukaryotic kingdom, members of this protein family exert essential roles in the regulation of phospholipid metabolism and central aspects of phospholipid-mediated signaling. Indeed, it is now known that dysfunction of specific PLTPs defines the basis of inherited diseases in mammals, and this list is expected to grow. Phospholipid transfer proteins, their biochemical properties, and the emerging clues regarding their physiological functions are reviewed.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Transferência de Fosfolipídeos , Animais , Humanos
13.
Traffic ; 1(3): 195-202, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11208102

RESUMO

The past 20 years have witnessed tremendous progress in our understanding of the molecular machinery that controls protein and membrane transport between organelles (Scheckman R, Orci L. Coat proteins and vesicle budding. Science 1996;271: 1526-1533 and Rothman JE. Mechanisms of intracellular protein transport. Nature 1994;372: 55-63.) The research efforts responsible for these impressive advances have largely focused on the identification and characterization of protein factors that participate in membrane trafficking events. The role of membranes and their lipid constituents has received considerably less attention. Indeed, until rather recently, popular models for mechanisms of membrane trafficking had relegated membrane lipids to the status of a passive platform, subject to deformation by the action of coat proteins whose polymerization and depolymerization govern vesicle budding and fusion reactions. The 1990s, and particularly its last half, has brought fundamental reappraisals of the interface of lipids and lipid metabolism in regulating intracellular membrane trafficking events. Some of the emerging themes are reviewed here.


Assuntos
Transporte Biológico/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Proteínas de Transporte/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Exocitose , Proteínas Fúngicas/metabolismo , Humanos , Bicamadas Lipídicas , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosfatidilcolinas/metabolismo , Fosfatidilinositol Diacilglicerol-Liase , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo , Fosfolipases Tipo C/metabolismo
14.
Mol Cell ; 4(2): 187-97, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10488334

RESUMO

Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi secretory function. It is widely accepted, though unproven, that phosphatidylinositol transfer between membranes represents the physiological activity of phosphatidylinositol transfer proteins (PITPs). We report that Sec14pK66,239A is inactivated for phosphatidylinositol, but not phosphatidylcholine (PC), transfer activity. As expected, Sec14pK66,239A fails to meet established criteria for a PITP in vitro and fails to stimulate phosphoinositide production in vivo. However, its expression efficiently rescues the lethality and Golgi secretory defects associated with sec14-1ts and sec14 null mutations. This complementation requires neither phospholipase D activation nor the involvement of a novel class of minor yeast PITPs. These findings indicate that PI binding/transfer is remarkably dispensable for Sec14p function in vivo.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Citosol/metabolismo , Glucosídeos/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Transferência de Fosfolipídeos , Conformação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Mol Biol Cell ; 10(7): 2235-50, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10397762

RESUMO

SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect "bypass Sec14p" will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Inositol/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Leveduras/metabolismo , Proteínas de Bactérias/metabolismo , Colina/metabolismo , Cistina Difosfato/metabolismo , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Mutação , Fosfatidilcolinas/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase D/metabolismo , Proteínas de Transferência de Fosfolipídeos , Leveduras/genética
16.
EMBO J ; 18(6): 1506-15, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10075922

RESUMO

Analysis of microsomal ATP transport in yeast resulted in the identification of Sac1p as an important factor in efficient ATP uptake into the endoplasmic reticulum (ER) lumen. Yet it remained unclear whether Sac1p is the authentic transporter in this reaction. Sac1p shows no homology to other known solute transporters but displays similarity to the N-terminal non-catalytic domain of a subset of inositol 5'-phosphatases. Furthermore, Sac1p was demonstrated to be involved in inositol phospholipid metabolism, an activity whose absence contributes to the bypass Sec14p phenotype in sac1 mutants. We now show that purified recombinant Sac1p can complement ATP transport defects when reconstituted together with sac1Delta microsomal extracts, but is unable to catalyze ATP transport itself. In addition, we demonstrate that sac1Delta strains are defective in ER protein translocation and folding, which is a direct consequence of impaired ATP transport function and not related to the role of Sac1p in Golgi inositol phospholipid metabolism. These data suggest that Sac1p is an important regulator of microsomal ATP transport providing a possible link between inositol phospholipid signaling and ATP-dependent processes in the yeast ER.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases , Proteolipídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 95(21): 12346-51, 1998 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-9770489

RESUMO

Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such 'bypass Sec14p' mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in 'bypass Sec14p' mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for 'bypass Sec14p', and yeast operating under 'bypass Sec14p' conditions are ethanol-sensitive. These data suggest that PLD supports 'bypass Sec14p' by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.


Assuntos
Proteínas de Transporte/genética , Proteínas de Membrana , Fosfolipase D/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Catálise , Etanol/farmacologia , Mutação , Fenótipo , Fosfatidilcolinas/metabolismo , Proteínas de Transferência de Fosfolipídeos , Saccharomyces cerevisiae/metabolismo
18.
Proc Natl Acad Sci U S A ; 95(19): 11181-6, 1998 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-9736710

RESUMO

We identified the phosphatidylinositol transfer protein (PITP) as being responsible for a powerful latent, nucleotide-independent, Golgi-vesiculating activity that is present in the cytosol but is only manifested as an uncontrolled activity in a cytosolic protein subfraction, in which it is separated from regulatory components that appear to normally limit its action to the scission of COPI-coated buds from trans-Golgi network membranes. A specific anti-PITP antibody that recognizes the two mammalian PITP isoforms fully inhibited the capacity of the cytosol to support normal vesicle generation as well as the uncontrolled vesiculating activity manifested by the cytosolic protein subfraction. The phosphatidylinositol- (PI) loaded form of the yeast PITP, Sec14p, but not the phosphatidylcholine- (PC) loaded form of the protein, was capable of substituting for the cytosolic subfraction in promoting the scission of coated buds from the trans-Golgi network. At higher concentration, however, Sec14p, when loaded with PI, but not with PC or phosphatidylglycerol, caused by itself an indiscriminate vesiculation of uncoated Golgi membranes that could be suppressed by PC-Sec14p, which also suppresses the uncontrolled vesiculation caused by the cytosolic subfraction. We propose that, by delivering PI to specific sites in the Golgi membrane near the necks of coated buds, PITP induces local changes in the organization of the lipid bilayer, possibly involving PI metabolites, that triggers the fusion of the ectoplasmic faces of the Golgi membrane necessary for the scission of COPI-coated vesicles.


Assuntos
Proteínas de Transporte/fisiologia , Vesículas Revestidas/metabolismo , Complexo de Golgi/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Animais , Vesículas Revestidas/ultraestrutura , Proteína Coatomer , Citosol/química , Etilmaleimida/farmacologia , Proteínas Fúngicas/metabolismo , Lipossomos/metabolismo , Fusão de Membrana/fisiologia , Microscopia Eletrônica , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos , Ratos , Proteínas do Envelope Viral/metabolismo
19.
Biochim Biophys Acta ; 1404(1-2): 85-100, 1998 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-9714753

RESUMO

The history of the Golgi complex now reaches its 100 year anniversary. Over the past several decades, tremendous effort has gone into cataloguing Golgi resident proteins, measuring the lipid compositions of Golgi membranes, and in elucidating the pathways by which proteins and lipids traffic through this unique organelle. Only in the past 8 years or so has experimental scrutiny extended to the investigation of how lipids and proteins cooperate to endow the Golgi with its various capabilities regarding protein/lipid transport and sorting. In this chapter we review some of the most recent advances in deciphering the functional interfaces between lipids and proteins of the Golgi complex.


Assuntos
Complexo de Golgi/fisiologia , Metabolismo dos Lipídeos , Lipídeos/fisiologia , Animais , Transporte Biológico , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/biossíntese
20.
EMBO J ; 17(14): 4004-17, 1998 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9670016

RESUMO

Phosphatidylinositol transfer proteins (PITPs) have been shown to play important roles in regulating a number of signal transduction pathways that couple to vesicle trafficking reactions, phosphoinositide-driven receptor-mediated signaling cascades, and development. While yeast and metazoan PITPs have been analyzed in some detail, plant PITPs remain entirely uncharacterized. We report the identification and characterization of two soybean proteins, Ssh1p and Ssh2p, whose structural genes were recovered on the basis of their abilities to rescue the viability of PITP-deficient Saccharomyces cerevisiae strains. We demonstrate that, while both Ssh1p and Ssh2p share approximately 25% primary sequence identity with yeast PITP, these proteins exhibit biochemical properties that diverge from those of the known PITPs. Ssh1p and Ssh2p represent high-affinity phosphoinositide binding proteins that are distinguished from each other both on the basis of their phospholipid binding specificities and by their substantially non-overlapping patterns of expression in the soybean plant. Finally, we show that Ssh1p is phosphorylated in response to various environmental stress conditions, including hyperosmotic stress. We suggest that Ssh1p may function as one component of a stress response pathway that serves to protect the adult plant from osmotic insult.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/genética , Proteínas de Membrana , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Clonagem Molecular , Citosol/metabolismo , Genes de Plantas/genética , Dados de Sequência Molecular , Concentração Osmolar , Proteínas de Transferência de Fosfolipídeos , Fosforilação , Ligação Proteica , RNA Mensageiro/análise , RNA de Plantas/análise , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Cloreto de Sódio , Sorbitol , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA