Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Toxics ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668493

RESUMO

Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.

2.
Drug Chem Toxicol ; : 1-13, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529831

RESUMO

Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.


Rosmarinic acid (RA) showed protective effect against doxorubicin-induced genotoxicity.Epigallocatechin gallate (EGCG) demonstrated pro-oxidant properties at high concentrations.EGCG and RA selectively targeted MDA-MB-231 cells.Synergistic effect was observed when EGCG or RA was administered together with Dox on breast cancer cells.

3.
Mutagenesis ; 38(5): 273-282, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37357800

RESUMO

The comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.


Assuntos
Dano ao DNA , Leucócitos Mononucleares , Ensaio Cometa/métodos , Leucócitos Mononucleares/metabolismo , Criopreservação/métodos , DNA/metabolismo
4.
Mutagenesis ; 38(5): 264-272, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37357815

RESUMO

The formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.

5.
Mutagenesis ; 38(5): 283-294, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37228081

RESUMO

The comet assay is a simple and versatile method for measurement of DNA damage in eukaryotic cells. More specifically, the assay detects DNA migration from agarose gel-embedded nucleoids, which depends on assay conditions and the level of DNA damage. Certain steps in the comet assay procedure have substantial impact on the magnitude of DNA migration (e.g. electric potential and time of electrophoresis). Inter-laboratory variation in DNA migration levels occurs because there is no agreement on optimal assay conditions or suitable assay controls. The purpose of the hCOMET ring trial was to test potassium bromate (KBrO3) as a positive control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. To this end, participating laboratories used semi-standardized protocols for cell culture (i.e. cell culture, KBrO3 exposure, and cryopreservation of cells) and comet assay procedures, whereas the data acquisition was not standardized (i.e. staining of comets and image analysis). Segregation of the total variation into partial standard deviation (SD) in % Tail DNA units indicates the importance of cell culture procedures (SD = 10.9), comet assay procedures (SD = 12.3), staining (SD = 7.9) and image analysis (SD = 0.5) on the overall inter-laboratory variation of DNA migration (SD = 18.2). Future studies should assess sources of variation in each of these steps. On the positive side, the hCOMET ring trial demonstrates that KBrO3 is a robust positive control for the Fpg-modified comet assay. In conclusion, the hCOMET ring trial has demonstrated a high reproducibility of detecting genotoxic effects by the comet assay, but inter-laboratory variation of DNA migration levels is a concern.

6.
Lab Invest ; 103(5): 100059, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801640

RESUMO

Smoking during pregnancy increases the risk of adverse pregnancy outcomes, such as stillbirth and fetal growth restriction. This suggests impaired placental function and restricted nutrient and oxygen supply. Studies investigating placental tissue at the end of pregnancy have revealed increased DNA damage as a potential underlying cause, which is driven by various toxic smoke ingredients and oxidative stress induced by reactive oxygen species (ROS). However, in the first trimester, the placenta develops and differentiates, and many pregnancy pathologies associated with reduced placental function originate here. Therefore, we determined DNA damage in a cohort of first-trimester placental samples of verified smokers and nonsmokers. In fact, we observed an 80% increase in DNA breaks (P < .001) and shortened telomeres by 5.8% (P = .04) in placentas exposed to maternal smoking. Surprisingly, there was a decrease in ROS-mediated DNA damage, ie, 8-oxo-guanidine modifications, in placentas of the smoking group (-41%; P = .021), which paralleled the reduced expression of base excision DNA repair machinery, which restores oxidative DNA damage. Moreover, we observed that the increase in placental oxidant defense machinery expression, which usually occurs at the end of the first trimester in a healthy pregnancy as a result of the full onset of uteroplacental blood flow, was absent in the smoking group. Therefore, in early pregnancy, maternal smoking causes placental DNA damage, contributing to placental malfunction and increased risk of stillbirth and fetal growth restriction in pregnant women. Additionally, reduced ROS-mediated DNA damage along with no increase in antioxidant enzymes suggests a delay in the establishment of physiological uteroplacental blood flow at the end of the first trimester, which may further add to a disturbed placental development and function as a result of smoking in pregnancy.


Assuntos
Placenta , Natimorto , Gravidez , Feminino , Humanos , Placenta/patologia , Primeiro Trimestre da Gravidez/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retardo do Crescimento Fetal/etiologia , Fumar/efeitos adversos
7.
Nat Protoc ; 18(3): 929-989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707722

RESUMO

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Humanos , Ensaio Cometa/métodos , Células Eucarióticas , DNA/genética
8.
Arch Toxicol ; 97(1): 295-306, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273350

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Alcaloides de Pirrolizidina , Neoplasias do Colo do Útero , Feminino , Humanos , Células Hep G2 , Técnicas de Cocultura , Células HeLa , Células Endoteliais/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Dano ao DNA
10.
Expert Rev Mol Med ; 24: e28, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35899852

RESUMO

The increase in the prevalence of obesity has led to an elevated risk for several associated diseases including cancer. Several studies have investigated the DNA damage in human blood samples and showed a clear trend towards increased DNA damage in obesity. Reduced genomic stability is thus one of the consequences of obesity, which may contribute to the related cancer risk. Whether this is influenced by compromised DNA repair has not been elucidated sufficiently yet. On the other hand, obesity has also been linked to reduced therapy survival and increased adverse effects during chemotherapy, although the available data are controversial. Despite some indications that obesity might alter hepatic metabolism, current literature in humans is insufficient, and results from animal studies are inconclusive. Here we have summarised published data on hepatic drug metabolism to understand the impact of obesity on cancer therapy better. Furthermore, we highlight knowledge gaps in the interrelationship between obesity and drug metabolism from a toxicological perspective.


Assuntos
Neoplasias , Xenobióticos , Animais , Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Humanos , Neoplasias/etiologia , Neoplasias/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Xenobióticos/efeitos adversos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35151425

RESUMO

The comet assay is widely used for quantification of genomic damage in humans. Peripheral blood derived mononuclear cells (PBMCs) are the most often used cell type for this purpose. Since the comet assay can be performed in an enhanced throughput format, it can be applied to large sample collections such as biobanks. The European Prospective Investigation into Cancer and Nutrition (EPIC) study is one of the largest existing prospective cohort studies, and the German Cancer Research Institute (DKFZ) in Heidelberg is a participating center with 25.000 frozen blood samples stored from around 25 years ago, enabling retrospective assessment of disease risk factors. However, experience with decades long frozen samples in the comet assay is so far missing. In Heidelberg, 800 study participants were re-invited twice between 2010 and 2012 to donate further blood samples. Here, we analyzed 299 Heidelberg-EPIC samples, compiled from frozen PBMC and buffy coat preparations selected from the different sampling time points. In addition, 47 frozen PBMC samples from morbidly obese individuals were included. For buffy coat samples, we observed a poor correlation between DNA damage in the same donors assessed at two sampling time points. Additionally, no correlation between DNA damage in buffy coat samples and PBMCs was found. For PBMCs, a good correlation was observed between samples of the same donors at the two time points. DNA damage was not affected by age and smoking status, but high BMI (>30; obesity) was associated with increased DNA damage in PBMCs. There was no indication for a threshold of a certain BMI for increased DNA damage. In conclusion, while 25 year-long stored buffy coat preparations may require adaptation of certain experimental parameters such as cell density and electrophoresis conditions, frozen PBMC biobank samples can be analyzed in the comet assay even after a decade of storage.


Assuntos
Ensaio Cometa , Criopreservação , Dano ao DNA , Leucócitos Mononucleares , Biomarcadores , Humanos , Obesidade Mórbida/sangue , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
Nat Prod Res ; 36(11): 2791-2799, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34000924

RESUMO

A phytochemical investigation of the liana of Artabotrys thomsonii led to the isolation of a new oxoberberine alkaloid, 2,10-dihydroxy-3,9-dimethoxy-8-oxo-protoberberine (7), along with six known compounds. Their chemical structures were elucidated by 1 D and 2 D NMR spectroscopic methods and HRESI-MSn data analysis. Compounds 4 and 7 were selected for further in vitro investigations. In accordance with expectations from their chemical structures, compounds 7 and 4 showed a clear antioxidant activity in a cell-free assay, with compound 7 being 7-fold more active than 4. Cytotoxicity, cytostatic and genotoxic effects only occurred at high micromolar concentrations of 50 µM or more. Compound 7 was slightly less effective than compound 4. A low micromolar concentration of 10 µM did not cause any damaging cellular effects but showed potential for a protection against the micronucleus-inducing effect of reactive oxygen species hydrogen peroxide, although not to a significant extent.


Assuntos
Alcaloides , Annonaceae , Antineoplásicos , Alcaloides/farmacologia , Annonaceae/química , Dano ao DNA , Estrutura Molecular
13.
Arch Toxicol ; 95(12): 3803-3813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34609522

RESUMO

The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H2O2) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H2O2 or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Alquilantes/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etoposídeo/administração & dosagem , Etoposídeo/toxicidade , Humanos , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/administração & dosagem , Metanossulfonato de Metila/toxicidade , Oxidantes/administração & dosagem , Oxidantes/toxicidade , Fatores de Tempo , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/toxicidade
14.
Mutagenesis ; 36(3): 193-212, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755160

RESUMO

DNA damage and repair activity are often assessed in blood samples from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the samples on the day of collection without any type of storage. For instance, certain studies use repeated sampling of cells from the same subject or samples from different subjects collected at different time-points, and it is desirable to analyse all these samples in the same comet assay experiment. In addition, flawless comet assay analyses on frozen samples open up the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors' experiences indicate that various types of blood samples can be cryopreserved with only a minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen samples of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB samples.


Assuntos
Preservação de Sangue , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Leucócitos Mononucleares , Coleta de Amostras Sanguíneas , Criopreservação , Humanos
15.
Arch Toxicol ; 95(5): 1831-1841, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666708

RESUMO

The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.


Assuntos
Ensaio Cometa/métodos , Criopreservação , Monitoramento Biológico , Dano ao DNA , Reparo do DNA , Humanos , Peróxido de Hidrogênio , Leucócitos Mononucleares
16.
Artigo em Inglês | MEDLINE | ID: mdl-33551105

RESUMO

INTRODUCTION: Pyrrolizidine alkaloids (PAs) are found in many plant species as secondary metabolites which affect humans via contaminated food sources, herbal medicines and dietary supplements. Hundreds of compounds belonging to PAs have been identified. PAs undergo hepatic metabolism, after which they can induce hepatotoxicity and carcinogenicity. Many aspects of their mechanism of carcinogenicity are still unclear and it is important for human risk assessment to investigate this class of compounds further. MATERIAL AND METHODS: Human hepatoma cells HepG2 were used to investigate the genotoxicity of different chemical structural classes of PAs, namely europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine and lasiocarpine, in the cytokinesis-block micronucleus (CBMN) assay. The different ester type PAs europine, seneciphylline, and lasiocarpine were also tested in human hepatoma Huh6 cells. Six different PAs were investigated in a crosslink comet assay in HepG2 cells. RESULTS: The maximal increase of micronucleus formation was for all PAs in the range of 1.64-2.0 fold. The lowest concentrations at which significant induction of micronuclei were found were 3.2 µM for lasiocarpine and riddelliine, 32 µM for retrorsine and echimidine, and 100 µM for seneciphylline, europine and lycopsamine. Significant induction of micronuclei by lasiocarpine, seneciphylline, and europine were achieved in Huh6 cells at similar concentrations. Reduced tail formation after hydrogen peroxide treatment was found in the crosslink comet assay for all diester type PAs, while an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. CONCLUSION: The widely available human hepatoma cell lines HepG2 and Huh6 were suitable for the assessment of PA-induced genotoxicity. Selected PAs confirmed previously published potency rankings in the micronucleus assay. In HepG2 cells, the crosslinking activity was related to the ester type, which is a first report of PA mediated effects in the comet assay.


Assuntos
Carcinoma Hepatocelular/patologia , Proliferação de Células , Dano ao DNA , Neoplasias Hepáticas/patologia , Alcaloides de Pirrolizidina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Testes para Micronúcleos , Células Tumorais Cultivadas
17.
iScience ; 23(12): 101777, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33294786

RESUMO

Regional changes to the intestinal microenvironment brought about by Roux-en-Y gastric bypass (RYGB) surgery may contribute to some of its potent systemic metabolic benefits through favorably regulating various local cellular processes. Here, we show that the intestinal contents of RYGB-operated compared with sham-operated rats region-dependently confer superior glycemic control to recipient germ-free mice in association with suppression of endotoxemia. Correspondingly, they had direct barrier-stabilizing effects on an intestinal epithelial cell line which, bile-exposed intestinal contents, were partly farnesoid X receptor (FXR)-dependent. Further, circulating fibroblast growth factor 19 levels, a readout of intestinal FXR activation, negatively correlated with endotoxemia severity in longitudinal cohort of RYGB patients. These findings suggest that various host- and/or microbiota-derived luminal factors region-specifically and synergistically stabilize the intestinal epithelial barrier following RYGB through FXR signaling, which could potentially be leveraged to better treat endotoxemia-induced insulin resistance in obesity in a non-invasive and more targeted manner.

18.
Mutat Res Rev Mutat Res ; 786: 108340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33339580

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is defined as a gradual loss of renal function progressing from very mild damage, with no obvious symptoms in stage one, to complete kidney failure in stage five, which ultimately requires kidney replacement therapy by organ transplantation or dialysis. Cancer incidence and other health problems, mainly diabetes and hypertension, are elevated in CKD, ultimately leading to elevated mortality. METHODS: A literature search on the induction of micronuclei (MN) as endpoint for genomic damage in white blood cells and buccal mucosa cells of CKD patients was conducted. Possible associations with disease stage, treatment modalities, and vitamin or antioxidant supplementations were analyzed. RESULTS: In total, 26 studies were enclosed in the data analysis. Patient groups in the predialysis or hemodialysis state of the disease exhibit higher levels of genomic damage, measured as micronucleus frequency in peripheral blood lymphocytes and buccal mucosa cells, than healthy control groups. Genomic damage seems to increase with the disease stage during the predialysis phase. The association with dialysis regimens or with years on dialysis is less clear, but there are indications that efficient removal of uremic toxins is beneficial. Patients with CKD receive a variety of medications, some of which could modulate genomic damage levels and thus contribute to the observed heterogeneity. In addition, supplementation with vitamins or antioxidants may in some cases lower the genomic damage. Meta-Analysis confirmed the high and significant levels of genomic damage present in CKD patients compared to matched healthy controls. CONCLUSION: Genomic damage, as measured by the MN frequency, is elevated in CKD patients. Different strategies, including supplementation with antioxidants and optimizing dialysis processes, can reduce the levels of genomic damage and the different associated pathologies. Whether MN frequency can in the future also be used to assist in certain therapeutic decisions in CKD will have to be investigated further in larger studies.


Assuntos
Antioxidantes/farmacologia , Insuficiência Renal Crônica/genética , Vitaminas/farmacologia , Dano ao DNA/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Linfócitos/efeitos dos fármacos , Testes para Micronúcleos , Diálise Renal
19.
J Trace Elem Med Biol ; 61: 126563, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32531707

RESUMO

Arsenolipids, especially arsenic-containing hydrocarbons (AsHC), are an emerging class of seafood originating contaminants. Here we toxicologically characterize a recently identified oxo-AsHC 332 metabolite, thioxo-AsHC 348 in cultured human liver (HepG2) cells. Compared to results of previous studies of the parent compound oxo-AsHC 332, thioxo-AsHC 348 substantially affected cell viability in the same concentration range but exerted about 10-fold lower cellular bioavailability. Similar to oxo-AsHC 332, thioxo-AsHC 348 did not substantially induce oxidative stress nor DNA damage. Moreover, in contrast to oxo-AsHC 332 mitochondria seem not to be a primary subcellular toxicity target for thioxo-AsHC 348. This study indicates that thioxo-AsHC 348 is at least as toxic as its parent compound oxo-AsHC 332 but very likely acts via a different mode of toxic action, which still needs to be identified.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32522349

RESUMO

Obesity is associated with elevated cancer risk, which may be represented by elevated genomic damage. Oxidative stress plays a key role in obesity related detrimental health consequences including DNA oxidation damage. The elevated cancer risk in obesity may be a consequence. Weight loss has been shown to reduce genomic damage, but the role of oxidative stress in that has not been clarified. The aim of this study is therefore to investigate the influence of bariatric surgery induced weight loss on DNA oxidation damage in morbidly obese subjects. For this aim, we used cryopreserved peripheral blood mononuclear cells in the FPG comet assay. Advanced protein oxidation products and 3-nitrotyrosine were measured as oxidative and nitrative protein stress markers. Furthermore, expression of oxidative stress related proteins HSP70 and Nrf2 as well as mitochondrial enzyme citrate synthase and NADPH oxidase subunit p22 phox were analysed. Our findings revealed significantly reduced DNA strand breaks, but DNA base oxidation was not reduced. We observed significant reduction in plasma AOPPs and 3-nitrotyrosine, which indicated an improvement in oxidative/nitrative stress. However, expression of HSP70 and Nrf2 were not altered after weight loss. In addition, expression of citrate synthase and p22 phox were also unaltered. Overall, bariatric surgery induced significant reduction in excess body weight and improved the patients' health status, including reduced DNA strand breaks and slightly improved antioxidant status in some of the investigated endpoints, while cellular ROS formation and DNA oxidation damage stayed unaltered. This complex situation may be due to combined beneficial effects of weight loss and burdening of the body with fat breakdown products. In the future, collecting samples two years after surgery, when patients have been in a weight plateau for some time, might be a promising approach.


Assuntos
Dano ao DNA/fisiologia , Estresse Oxidativo/fisiologia , Redução de Peso/fisiologia , Adulto , Antioxidantes/metabolismo , Cirurgia Bariátrica/métodos , Ensaio Cometa/métodos , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Obesidade/metabolismo , Obesidade/cirurgia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA